University of California at San Diego – Department of Physics – Prof. John McGreevy

General Relativity (225A) Fall 2013 Assignment 1

Posted September 29, 2013

Due Monday, Oct 7, 2013

1. Show that

$$\epsilon_{lmn} R_{li} R_{mj} R_{nk} = \det R \epsilon_{ijk}$$

for any 3×3 matrix R.

(Recall that the determinant is a scalar function of square matrices which is odd under interchange of rows and columns and has det 1 = 1. And ϵ_{ijk} is the completely antisymmetric collection of numbers with $\epsilon_{123} = 1$.)

2. Show that the Maxwell equations (in Minkowski space)

$$\epsilon_{ijk}\partial_j E_k + \frac{1}{c}\partial_t B_i = 0, \quad \partial_i H_i = 0$$

$$\epsilon_{ijk}\partial_j B_k - \frac{1}{c}\partial_t E_i = \frac{4\pi}{c}J_i, \quad \partial_i E_i = 4\pi\rho$$

are invariant under the following set of transformations:

$$\begin{array}{rcl}
x^{i} & \mapsto & \tilde{x}^{i} \equiv R_{ij}x^{j}, & R \in O(3) \\
E_{i}(x) & \mapsto & \tilde{E}_{i}(\tilde{x}) = R_{ij}E_{j}(x) \\
B_{i}(x) & \mapsto & \tilde{B}_{i}(\tilde{x}) = \det RR_{ij}B_{j}(x) \\
\rho(x) & \mapsto & \tilde{\rho}(\tilde{x}) = \rho(x), & J_{i}(x) \mapsto \tilde{J}_{i}(\tilde{x}) = R_{ij}J_{j}(x).
\end{array}$$
(1)

That is, \vec{E} is a polar vector and \vec{B} is an axial vector. Recall that an O(3) matrix satisfies $R^T R = 1$.

3. Prove the identity

$$\epsilon_{ijk}\epsilon_{lmn} = \det \begin{pmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{pmatrix} .$$

Use this identity to show that

$$\epsilon_{ij\mathbf{k}}\epsilon_{lm\mathbf{k}} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}.$$

- 4. Lorentz contraction exercise [from Brandenberger]
 - (a) Suppose frame S' moves with velocity v relative to frame S. A projectile in frame S' is fired with velocity v' at an angle θ' with respect to the forward direction of motion (\vec{v}) . What is this angle θ measured in S? What if the projectile is a photon?

(b) An observer A at rest relative to the fixed distant stars sees an isotropic distribution of stars in a galaxy which occupies some region of her sky. The number of stars seen within an element of solid angle $d\Omega$ is

$$P\mathrm{d}\Omega = \frac{N}{4\pi}\mathrm{d}\Omega$$

where N is the total number of stars that A can see. Another observer B moves uniformly along the z axis relative to A with velocity v. Letting θ' and φ' be respectively the polar (with respect to \hat{z}) and azimuthal angle in the inertial frame of B, what is the distribution function $P'(\theta', \varphi')$ such that $P'(\theta', \varphi') d\Omega'$ is the number of stars seen by B in the solid angle $d\Omega' = \sin \theta' d\theta' d\varphi'$.

- (c) Check that when integrating the distribution function over the sphere in the coordinates of B you obtain N! Discuss the behavior of the distribution P' in the limiting cases when the velocity v goes to 0 or to 1.
- 5. Show that the half of the Maxwell equations

$$0 = \epsilon^{\mu\nu\rho\sigma} \partial_{\nu} F_{\rho\sigma}$$

is invariant under the general coordinate transformation,

$$x^{\mu} \mapsto \tilde{x}^{\mu} = f^{\mu}(x), \quad F_{\mu\nu}(x) \mapsto \tilde{F}_{\mu\nu}(\tilde{x}) = \frac{\partial x^{\rho}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\sigma}}{\partial \tilde{x}^{\nu}} F_{\rho\sigma}(x)$$

for an arbitrary $f^{\mu}(x)$ with non-zero Jacobian.

The following problems are optional.

6. Eötvös

What is the optimal latitude at which to perform the Eötvös experiment?

7. Poincaré group

Show that the Poincaré group satisfies all the properties of a group. (That is: it has an identity, it is closed under the group law, it is associative, and every element has an inverse in the group.)