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1. Special relativity reminders

This problem is optional. Do it if you have to think about it or if you find it a useful
reminder.

(a) Derive the special relativity addition law for coordinate velocities dxi

dt
using the

Lorentz transformation x̃µ = Λµ
νx

ν .

(b) Beginning with the assumption that the speed of light is constant, derive the time
dilation effect as follows. Build a clock by bouncing a light ray between mirrors.
Watch the clock tick in a frame which is boosted transverse to the motion of the
light.

2. Electric-magnetic (Poincaré) duality

The vacuum Maxwell equations

0 = εµνρσ∂νFρσ, 0 = ∂µF
µν

are invariant under the exchange of the electric and magnetic fields ( ~E, ~B) 7→ ( ~B,− ~E).
This is called ‘electric-magnetic duality’. 1

Show that the duality transformation can be written in a covariant manner as

Fµν 7→ (?F )µν ≡
1

2
εµν··F

··.

Verify that the (vacuum) Maxwell equations are invariant under this replacement.

Check that doing the duality map twice gives −1: ? (?F ) = −F .

3. Show that ~E2 − ~B2 and ~E · ~B are respectively scalar and pseudo-scalar under the
Lorentz group by expressing them in terms of Fµν .

4. Lorentz transformations of the EM fields

This problem is to convince yourself that the formula we gave for the Lorentz trans-
formation of the Maxwell field strength:

Fµν(x) 7→ F̃µν(x̃) , Fµν(x) = Λρ
µΛσ

ν F̃ρσ(x̃) (1)

is correct, i.e. it is a Lorentz tensor.

1In the presence of electric charges, the duality transformation is only a symmetry if we allow for magnetic
monopole charge; the duality transformation then must exchange electric charges and magnetic charges.
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(a) Consider the case where Λ is a Lorentz boost in some direction. What trans-
formation laws does this imply for the components of the electric field along the
boost E‖? And the component transverse to the boost E⊥?

(b) Describe a charge configuration which creates a constant electric field in some
region of space.

(c) For the electric field case, boost the charge configuration along the direction of the
field and transverse to the direction of the field, and find the new fields that they
create. You may assume the experimental fact that electric charge is a scalar
quantity. Convince yourself that they agree with the answers from the fancy
formula (1), in the case where there is no magnetic field.

(d) Admit to yourself that magnetic charge could exist. Use this fact and the idea in
problem 2 to figure out how B‖ and B⊥ transform in the absence of an electric
field.

(e) Consider current in a neutral wire made from negative charge per unit length
λ (‘electrons’) moving at velocity vdrift superposed with a static positive charge
density. What field does this create? By boosting to the rest frame of the negative
charges, find the transformation rule for E⊥, B⊥ when both are nonzero.

5. Easy. Consider the worldline of a particle which sits at the origin for all time. In lecture
we showed that a tangent vector to this curve has negative proper length-squared,

ηµν
dxµ

dτ

dxν

dτ
< 0 ,

where τ is an arbitrary parameter along the worldline. That is, the tangent vector is
timelike. How do I know that a Lorentz boost cannot take this vector to one which is
spacelike?

6. Light-cone accounting

(a) Show that any timelike vector uµ for which u0 > 0 and uµuµ = −1 is the four-
velocity of some worldline.

(b) Use the previous result to show that for any timelike vector vµ there is a Lorentz
frame in which vµ has zero spatial components.

(c) Show that the sum of any two orthogonal2 spacelike vectors is spacelike.

(d) Show that a (nonzero) timelike vector and a (nonzero) null vector cannot be
orthogonal.

2Note that the assumption of orthogonal is necessary: otherwise V = (v0, ~v) and Ṽ ≡ (v0,−~v) is a
counterexample.
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