University of California at San Diego – Department of Physics – Prof. John McGreevy

General Relativity (225A) Fall 2013 Assignment 5

Posted October 23, 2013

Due Monday, November 4, 2013

- 1. A constant vector field. Consider the vector field $W \equiv \partial_x$ in the flat plane with metric $ds^2 = dx^2 + dy^2$. Write the components of W in polar coordinates $W = W_r \partial_r + W_{\varphi} \partial_{\varphi}$ and compute their partial derivatives. Then compute the (metric-compatible) covariant derivative in polar coordinates.
- 2. Vector fields on the 2-sphere. [from Ooguri] A two-dimensional sphere S^2 of unit radius can be embedded in the three-dimensional euclidean space \mathbb{R}^3 by the equation

$$x^2 + y^2 + z^2 = 1$$

For coordinates on the sphere we can use (θ, φ) defined by

$$x = \sin\theta\cos\varphi, \ y = \sin\theta\sin\varphi, \ z = \cos\theta$$

except at the north and south poles $\theta = 0, \pi$ where the value of φ is ambiguous.

An infinitesimal rotation of \mathbb{R}^3 around its origin induces a tangent vector field on S^2 , which is said to *generate* the rotation¹. Show that there are three linearly-independent vector fields² of this type and compute their commutators $[\boldsymbol{\sigma}^i, \boldsymbol{\sigma}^j]$.

- 3. **E**&M in curved space. Consider EM fields $A_{\mu}(x)$ in a curved spacetime with a general metric $g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$.
 - (a) Write an action functional $S[A_{\mu}, g_{\mu\nu}]$ which is general-coordinate invariant and gauge invariant and which reduces to the Maxwell action if we evaluate it in Minkowski spacetime $S[A_{\mu}, \eta_{\mu\nu}]$.
 - (b) Vary this action with respect to A_{μ} to find the equations of motion governing electrodynamics in curved space.
- 4. The badness cancels. Using the coordinate transformation property of the Christoffel connection $\Gamma^{\rho}_{\mu\nu}$, verify that

$$\nabla_{\mu}\omega_{\nu} = \partial_{\mu}\omega_{\nu} - \Gamma^{\rho}_{\mu\nu}\omega_{\rho}$$

transforms as a rank-2 covariant tensor if ω is a one-form.

 $f(x) \mapsto f(Rx) = f(x + \theta Ax) = f(x) + (\theta Ax)^{i} \partial_{i} f(x) + \dots$

¹ More precisely, consider the result of acting with a rotation by an infinitesimal angle θ on an arbitrary smooth function:

⁻ the vector field $(Ax)^i \partial_i$ generates the rotation.

² A vector field v on M is linearly dependent on some others $\{v_{\alpha}\}$ if there exist *constants* a^{α} s.t. $v = a^{\alpha}v_{\alpha}$ everywhere in M.