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This will be the last problem set.

1. Energy loss to gravitational waves.

Calculate the rate at which a binary star system loses energy to gravitational radiation.
Assume two stars of equal mass M with an instantaneous separation 2r.

2. Coordinate horizons. [from Brandenberger]

In this problem we will come to terms with the notion of an event horizon using only
special relativity.

Consider a train moving with constant acceleration a in Minkowski spacetime.

[Hint 1: a covariant definition of constant acceleration is

a20 = aµaµ, aµ ≡ ∂2τx
µ (1)

is the proper acceleration and a0 is a constant.

Hint 2: show that the solution of (1) is a hyperbola in the xt plane.]

(a) Using only special relativity, determine the frequency with which light emitted on
the last car of the train is received by a detector in the front car.

(b) Introduce new coordinates ξ and η in which each point on the train is at constant
position ξ and for which η is (proportional to) the proper time of the train. Show
that the coordinate transformation is

t = a−1eaξ sinh(aη), x = a−1eaξ cosh(aη)

(c) What is the metric in these new coordinates? Where have you seen this before?

(d) Use the Einstein equivalence principle to answer the question in part (a).

(e) Discuss the causal structure of Minkowski spacetime from the point of view of
an observer on the train. Specifically, can the observer see all of Minkowski
spacetime?

3. Sanity check.
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The motion of the Earth about the Sun can be described as the motion of a test particle
in the Schwarzschild metric

ds2 = −
(

1− 2GNM

r

)
dt2 +

1

1− 2GNM
r

dr2 + r2ds2S2

with M the mass of the Sun. Verify that the Newtonian limit of this problem gives
the well-known 1/r2 force between the Earth and Sun. Calculate to first order in the
small quantities the correction terms to the Newtonian force due to GR.

4. Falling into a black hole

A massive particle initially at rest at radius r > 2GM starts falling radially into the
Schwarzchild metric. Compute the proper times it takes for the particle to reach the
Schwarzchild radius at r = 2GM and the singularity at r = 0. Compute also the
Schwarzschild coordinate time t to reach the horizon.

[Don’t forget to take advantage of conservation laws.]

Imprecisely-formulated bonus problem: Suppose the test particle has some finite ex-
tent, ε. Compute and describe the tidal forces on the particle as a function of its radial
position r.

The following problems are optional.

5. Killing vector fields form a closed algebra.

Show that, if ξ and η are Killing vector fields, then so is their Lie bracket [ξ, η].

6. Exact gravitational wave solutions.

Show that with the ansatz

ds2 = −dudv +
∑
i=1,2

dyidyi + F (u, yi)du2 (2)

the vacuum Einstein equations are solved if

Rµν = 0 ⇔
∑
i

∂2

∂yi∂yi
F (u, y1, y2) = 0. (3)

Further, show that (4) is solved by

F (u, yi) =
∑
i,j=1,2

hij(u)yiyj if
∑
i

hii(u) = 0 .

7. Boundary of anti-de Sitter spacetime.
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Recall the metric of anti-de Sitter space (AdS) in Poincaré coordinates.

ds2AdS = L2dz2 + ηµνdx
µdxν

z2
(4)

Here the coordinate z is positive. Show that a lightray sent from a point with z > 0
with ż < 0 reaches z = 0 in a finite coordinate time δt.

[In this sense, z = 0 is a (timelike) boundary of the AdS spacetime, and we must specify
boundary conditions there for the time evolution to be well-defined.]

8. Surface gravity and Hawking temperature.

Compute the periodicity of y for which this metric is regular at z = zm (i.e. has no
conical deficit):

ds2 = Ω(z)

(
f(z)dy2 +

dz2

f(z)
+ ds2other

)
where f(z) is a function with a first-order zero at z = zm
(i.e. f(zm) = 0 and ∂zf(zm) 6= 0)
and Ω(z) is regular and non-vanishing at z = zm.

If we think of y as imaginary time, this periodicity determines the temperature of the
black hole, since equilibrium at finite temperature means periodic Euclidean time.

a) Specialize your answer to the case of the euclidean Schwarzchild black hole in flat
space, for which

f(z) = 1− 2GM

z
, Ω = 1, ds2other = z2d~x2.

b) Specialize your answer to the case of the euclidean AdS black hole (with planar
horizon), for which

f(z) ≡ 1− z4

z4m
, Ω =

1

z2
, ds2other = d~x2.

c) Show that you get the same answer by computing the ‘surface gravity’ κ of the
horizon (the locus z = zm), which can be defined by

κ2 ≡ 1

2
∇aξ

b∇cξ
dgbdg

ac|z=zm

where ξa is the tangent vector to the shrinking circle, ξ = ∂y.

9. Derive the energy-momentum conservation equations for an ideal gas in an FRW uni-
verse. Give a physical interpretation.

10. Extremal Reissner-Nordstrom black hole.

a) Consider Einstein-Maxwell theory in four dimensions, with action

SEM =
1

16πGN

∫
d4x
√
g

(
R− 1

4
FµνF

µν

)
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Show that the Einstein equation 0 = δSEM
δgµν

implies that

Rµν = aGN

(
2Fµ.F

.
ν −

1

2
gµνF

2

)
for some constant a.

b) Consider the ansatz

ds2 = H−2(ρ)
(
−dt2

)
+H2(ρ)

(
dρ2 + ρ2dΩ2

2

)
,

F = bdt ∧ d
(
H(ρ)−1

)
where b is some constant. Show that the Einstein equation 0 = δSEM

δgµν
and Maxwell’s

equation 0 = δSEM
δAµ

are solved by the ansatz if H is a harmonic function on the IR3

whose metric is
γabdx

adxb := dρ2 + ρ2dΩ2
2.

Recall that H is harmonic iff 0 = 2H = 1√
γ
∂a(
√
γγab∂bH).

c) Find the form of the harmonic function which gives a spherically symmetric solution;
fix the two integration constants by demanding that i) the spacetime is asymptotically
flat and ii) the black hole has charge Q, meaning

∫
S2 at fixed ρ

?F = Q.

d) Take the near-horizon limit. Show that the geometry is AdS2 × S2. Determine the
relationship between the size of the throat and the charge of the hole.

e) If you’re feeling brave, add some magnetic charge to the black hole. You will need
to change the form of the gauge field to

F = bdt ∧ dH(ρ) +G(ρ)Ω2

where Ω2 is the area 2-form on the sphere, and G is some function.
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