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1. Minimum uncertainty state. [from Commins] The Heisenberg uncertainty relation

for a coordinate and its conjugate momentum

∆x∆p ≥ ~
2

is derived from the commutation relation [x,p] = i~ with the aid of the Cauchy-

Schwarz inequality. From consideration of the conditions that must be satisfied for that

inequality to become an equality, show that the minimum uncertainty wavefunction

must be a Gaussian.

2. Time-energy uncertainty. Consider an observable A which has no explicit depen-

dence on time. Define the variance of A in a state ψ to be

∆A ≡
√
〈(A− 〈A〉ψ)2〉ψ

as usual, with 〈A〉ψ ≡ 〈ψ|A|ψ〉. Let

∆T ≡ ∆A

|∂t〈A〉ψ|
.

This is a measure of the time required for 〈A〉 to change significantly, i.e. by an amount

comparable to its variance ∆A. Show that

∆E∆T ≥ ~
2
,

where ∆E is the variance of H, the Hamiltonian.

3. Wigner distribution function. [from Commins] Let ψ(x, t) = 〈x|ψ(t)〉 be a position-

space wavefunction for a particle in one dimension, and let φ(p, t) = 〈p|ψ(t)〉 be its

momentum-space counterpart. Define the associated Wigner (or phase-space) distri-

bution function by

W (x, p, t) ≡ 1

π

∫
dye2ipyψ?(x+ y, t)ψ(x− y, t).

The arguments of W , x and p are c-numbers. (The dependence on time will not play

an important role in our discussion.)
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(a) Show that the probability density in position space is

ρ(x, t) ≡ |ψ(x, t)|2 =

∫
dpW (x, p, t).

(b) Evaluate the Wigner function for a gaussian wavefunction, ψ(x) = 1
σ
√
2π
e−

x2

2σ2 .

(c) Show that the probability density in momentum space is

|φ(p, t)|2 =

∫
dxW (x, p, t).

(d) Let W1(x, p, t),W2(x, p, t) be the Wigner functions associated with two states

|ψ1(t)〉, |ψ2(t)〉. Show that their overlap-squared is

|〈ψ1|ψ2〉|2 = 2π

∫
dxdp W ?

1 (x, p, t)W2(x, p, t).

4. [optional] Can a general operator acting on the Hilbert space of a particle on a line be

written formally in terms of the position and wavenumber (k = −i∂) operators as

A =
∑
nm

anmk
nxm ?

If so, find the condition on anm for A to be hermitian.

5. [optional] Is the uncertainty principle still true for mixed states? If so, prove it. I

suggest the form

∆ρA∆ρB
?

≥ 1

2
|〈[A,B]〉ρ

with

〈A〉ρ ≡ trρA, ∆ρA ≡
√

(A− 〈A〉ρ)2.

The following three problems form a triptych, on the subject of resolving the various in-

finities involved in the quantum mechanics of a particle on the real line. There are two such

infinities: one is the fact that the real line goes on forever; this is resolved in problem 6.

The other is the fact that in between any two points there are infinitely many points; this

is resolved in problem 7. In problem 8 we resolve both to get a finite-dimensional Hilbert

space.

6. Particle on a circle.

Consider a particle which lives on a circle:
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That is, its coordinate x takes values in [0, 2πR] and we identify x ' x+ 2πR.

(a) Let’s assume that the wavefunction of the particle is periodic in x:

ψ(x+ 2πR) = ψ(x) .

What set of values can its momentum (that is, eigenvalues of the operator p =

−i~∂x) take?

(b) Recall that the overall phase of the state vector is not physical data. This suggests

the possibility that the wavefunction might not be periodic, but instead might

acquire a phase when we go around the circle:

ψ(x+ 2πR) = eiϕψ(x)

for some fixed ϕ. In this case what values does the momentum take?

7. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the discrete

values x = na, n ∈ Z where a is some unit of length and n is an integer. We’ll call the

corresponding position eigenstates |n〉. The Hilbert space is still infinite-dimensional,

but at least we have in our hands a countably infinite basis.

In this problem we will determine: what is the spectrum of the momentum operator

p in this system?

(a) Consider the state

|θ〉 =
1√
N

∑
n∈Z

einθ|n〉.

Show that |θ〉 is an eigenstate of the translation operator T̂ , defined by

T̂ =
∑
n∈Z

|n+ 1〉〈n|.

Why do I want to call θ momentum?

(b) What range of values of θ give different states |θ〉? [Recall that n is an integer.]

3



8. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice

around a circle, in the following sense. Its position can take only the discrete val-

ues x = a, 2a, 3a, ..., Na (where, again, a is some unit of length and again we’ll call

the corresponding position eigenstates |n〉). Suppose further that the particle lives on

a circle, so that the site labelled x = (N + 1)a is the same as the site labelled x = a.

We can visualize this as in the figure:

In this case, the Hilbert space has finite dimension N .

Consider the following N ×N matrix representation of a Hamiltonian operator (a is a

constant):

H =
1

a2



2 −1 0 0 0 · · · 0 −1

−1 2 −1 0 0 · · · 0 0

0 −1 2 −1 0 · · · 0 0

0 0 −1 2 −1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 2 −1

−1 0 0 0 0 · · · −1 2︸ ︷︷ ︸
N



N


(a) Convince yourself that this is equivalent to the following: Acting on an N -

dimensional Hilbert space with orthonormal basis {|n〉, n = 1, . . . , N}, Ĥ acts

by

a2Ĥ|n〉 = 2|n〉 − |n+ 1〉 − |n− 1〉, with |N + 1〉 ' |1〉
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that is, we consider the arguments of the ket to be integers modulo N .

(b) Show that Ĥ and T̂ (where T̂ is the ‘shift operator’ defined by T̂ : |n〉 7→ |n+ 1〉)
can be simultaneously diagonalized.

Consider again the state

|θ〉 =
1√
N

N∑
n=1

einθ|n〉.

(c) Show that |θ〉 is an eigenstate of T̂ , for values of θ that are consistent with the

periodicity n ' n+N .

(d) What values of θ give different states |θ〉? [Recall that n is an integer.]

(e) Find the matrix elements of the unitary operator U which relates position eigen-

states |n〉 to momentum eigenstates |θ〉: Uθn ≡ 〈n|θ〉.

(f) Find the spectrum of Ĥ.

Draw a picture of ε(θ): plot the energy eigenvalues versus the ‘momentum’ θ.

(g) Show that the matrix above is an approximation to (minus) the 1-dimensional

Laplacian −∂2x. That is, show (using Taylor’s theorem) that

a2∂2xf(x) = −2f(x) + (f(x+ a) + f(x− a)) +O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

(h) In the expression for the Hamiltonian, to restore units, I should have written:

Ĥ|n〉 =
~2

2m

1

a2
(2|n〉 − |n+ 1〉 − |n− 1〉) , with |N + 1〉 ' |1〉

where a is the distance between the sites, and m is the mass. Consider the limit

where a → 0, N → ∞ and look at the lowest-energy states (near p = 0); show

that we get the spectrum of a free particle on the line, ε = p2

2m
.
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