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1. Minimum uncertainty state. [from Commins| The Heisenberg uncertainty relation
for a coordinate and its conjugate momentum

AxAp > g

is derived from the commutation relation [x,p] = ih with the aid of the Cauchy-

Schwarz inequality. From consideration of the conditions that must be satisfied for that

inequality to become an equality, show that the minimum uncertainty wavefunction

must be a Gaussian.

2. Time-energy uncertainty. Consider an observable A which has no explicit depen-
dence on time. Define the variance of A in a state v to be

A= (A = (A)))
as usual, with (A), = (Y|A]y). Let

AA
AT = ————.
|01 (A)y]
This is a measure of the time required for (A) to change significantly, i.e. by an amount
comparable to its variance AA. Show that

AEAT > g

where AF is the variance of H, the Hamiltonian.

3. Wigner distribution function. [from Commins] Let ¢)(x,t) = (x[¢(t)) be a position-
space wavefunction for a particle in one dimension, and let ¢(p,t) = (p|(t)) be its
momentum-space counterpart. Define the associated Wigner (or phase-space) distri-
bution function by

W(x,p,t) = %/dyezipyw*(x +y, t)(x —y,t).

The arguments of W, z and p are c-numbers. (The dependence on time will not play
an important role in our discussion.)



(a) Show that the probability density in position space is
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(b) Evaluate the Wigner function for a gaussian wavefunction, ¢ (x) = - =€ 7.

(c) Show that the probability density in momentum space is

|wnwﬁz/ﬁﬂvum¢y

(d) Let Wi(z,p,t), Wa(x,p,t) be the Wigner functions associated with two states
|11(t)), [12(t)). Show that their overlap-squared is
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4. [optional] Can a general operator acting on the Hilbert space of a particle on a line be
written formally in terms of the position and wavenumber (k = —i@) operators as

A= Z A K X™ 7

nm

If so, find the condition on a,,, for A to be hermitian.

5. [optional] Is the uncertainty principle still true for mixed states? If so, prove it. I
suggest the form

A ANB > S|([A,B]),

N —

with
(A), =trpA, A,A= /(A - (A),)"

The following three problems form a triptych, on the subject of resolving the various in-
finities involved in the quantum mechanics of a particle on the real line. There are two such
infinities: one is the fact that the real line goes on forever; this is resolved in problem 6.
The other is the fact that in between any two points there are infinitely many points; this
is resolved in problem 7. In problem 8 we resolve both to get a finite-dimensional Hilbert
space.

6. Particle on a circle.

Consider a particle which lives on a circle:



That is, its coordinate = takes values in [0, 27 R] and we identify x ~ = + 27 R.

(a) Let’s assume that the wavefunction of the particle is periodic in x:

U(z+2rR) = () .
What set of values can its momentum (that is, eigenvalues of the operator p =
—ih0,) take?

(b) Recall that the overall phase of the state vector is not physical data. This suggests
the possibility that the wavefunction might not be periodic, but instead might
acquire a phase when we go around the circle:

(x4 27 R) = %y (z)
for some fixed ¢. In this case what values does the momentum take?

7. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the discrete
values © = na,n € Z where a is some unit of length and n is an integer. We’ll call the
corresponding position eigenstates |n). The Hilbert space is still infinite-dimensional,
but at least we have in our hands a countably infinite basis.

In this problem we will determine: what is the spectrum of the momentum operator
p in this system?

(a) Consider the state
1 )
0) = — Y e™|n).
0= S
Show that |) is an eigenstate of the translation operator T', defined by

T=> |n+1)n|.

Why do I want to call & momentum?

(b) What range of values of 6 give different states |#)? [Recall that n is an integer.]



8. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice
around a circle, in the following sense. Its position can take only the discrete val-
ues r = a,2a,3a, ..., Na (where, again, a is some unit of length and again we’ll call
the corresponding position eigenstates |n)). Suppose further that the particle lives on
a circle, so that the site labelled x = (N + 1)a is the same as the site labelled z = a.
We can visualize this as in the figure:
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In this case, the Hilbert space has finite dimension N.

Consider the following N x N matrix representation of a Hamiltonian operator (a is a

constant):
2-10 0 0-- 0 ~1
-12 -10 0--- 0 0
. 0 -12-10---0 0
H=— 0o 0-12-1---0 03%N

a e
0000 0--2-1
-10 0 0 0 - =1 2

N

(a) Convince yourself that this is equivalent to the following: Acting on an N-
dimensional Hilbert space with orthonormal basis {|n),n = 1,..., N}, H acts
by

a?Hln) =2[n) — [n+1) — |n—1),  with [N +1) ~|1)
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(b)

that is, we consider the arguments of the ket to be integers modulo N.

Show that H and T (where T is the ‘shift operator’ defined by T : |n) — |n + 1))
can be simultaneously diagonalized.

Consider again the state

()

1 X o
ye>:ﬁ;em In).

Show that |f) is an eigenstate of T, for values of § that are consistent with the
periodicity n >~ n + N.

What values of 6 give different states |#)7 [Recall that n is an integer.]

Find the matrix elements of the unitary operator U which relates position eigen-
states |n) to momentum eigenstates |0): Uy, = (n|6).

Find the spectrum of H.

Draw a picture of €(6): plot the energy eigenvalues versus the ‘momentum’ 6.

Show that the matrix above is an approximation to (minus) the 1-dimensional
Laplacian —@2. That is, show (using Taylor’s theorem) that

@02 f(x) = —2f(2) + (f(z +a) + f(z — a) + O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

In the expression for the Hamiltonian, to restore units, I should have written:

- h? 1

H|n>:%¥(2|n>—|n+l>—|n—1>)u with [N +1) >~ |1)
where a is the distance between the sites, and m is the mass. Consider the limit
where a — 0, N — oo and look at the lowest-energy states (near p = 0); show

that we get the spectrum of a free particle on the line, € = %.



