University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics C (Physics 212A) Fall 2015 Worksheet 3

Announcements

• The 212A web site is:

http://physics.ucsd.edu/~mcgreevy/f15/ .

Please check it regularly! It contains relevant course information!

Problems

1. Purity

Define again the state $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\phi}|1\rangle)$ as well as $\rho_{\beta} = \frac{1}{2}(|0\rangle\langle 0| + |1\rangle\langle 1|)$

- (a) Write the density matrix ρ_{ψ} associated with $|\psi\rangle$
- (b) Show that for both the states $\langle Z \rangle = 0$
- (c) Define the *purity* of a state as Tr $[\rho^2]$. Prove that this equal to 1 if ρ is pure. Compute it for both ρ_{ψ} and ρ_{β} .
- (d) Compute $\langle X \rangle$ with the above density matrices.

2. With All Your ρ 's Combined

Quantum states are said to form a convex set with extremal points corresponding to pure states. What does that mean?

(a) Prove that if ρ_1 and ρ_2 are density matrices then $\sigma \equiv q\rho_1 + (1-q)\rho_2$ is as well where q is a probability.

This implies that for every pair of points in the set the straight line that connects them is also contained in the object. For example a disk is a convex set but an annulus is not.

(b) A point is said to be extremal if it can't be written as a (non-trivial) linear combination of other states.

Prove the claim that pure states are extremal in this set.

(c) Define $S(\rho) = -\text{Tr} (\rho \log \rho)$ to be the von Neumann entropy. I'd like to prove something about $S(\sigma)$. Assume that ρ_1 and ρ_2 have mutually orthogonal support.¹ Show that in this case $S(\sigma) = qS(\rho_1) + (1-q)S(\rho_2) - (q \log q + (1-q)\log(1-q))$

¹Eigenvectors of ρ_1 with non-zero eigenvalue are all orthogonal to the similarly defined eigenvectors of ρ_2

3. C-NOT Evil

Consider the following operator

$$U_{CNOT} \equiv |0_A\rangle \langle 0_A| \otimes \mathbb{1}_B + |1_A\rangle \langle 1_A| \otimes \sigma_B^x \tag{1}$$

Notice that (1) does not factorize as $U = U_A \otimes U_B$. Therefore we might be able to create entanglement with it.

- (a) Write a matrix representation of (1) in the computational basis
- (b) What are the eigenvectors of (1)? Are any entangled?
- (c) Construct an input state $|In\rangle$ which has no entanglement but where $|Out\rangle \equiv U_{CNOT}|In\rangle$ is maximally entangled.