University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics C (Physics 212A) Fall 2015 Worksheet 5

Announcements

• The 212A web site is:

 $http://physics.ucsd.edu/\sim mcgreevy/f15/$.

Please check it regularly! It contains relevant course information!

Problems

1. Give it a Kick

Consider the D = 1 simple harmonic oscillator in its groundstate. Suppose something kicks the system imparting an additional momentum p_0 . What's the probability the system remains in the ground state?

- (a) What's the new Hamiltonian for the system? Express this in terms of the usual ladder operators \hat{a} and \hat{a}^{\dagger}
- (b) Define a new operator $\hat{A} \equiv \hat{a} \beta$ where $\beta \equiv \frac{1}{i\omega} \frac{p_0}{m} \sqrt{\frac{m\omega}{2}}$. Show that the \hat{A} are ladder operators: $[\hat{A}, \hat{A}^{\dagger}] = 1$
- (c) Rewrite the new Hamiltonian in terms of these operators, what do you find?
- (d) Relate the original groundstate $|0\rangle$ to the new groundstate $|\beta\rangle$
- (e) Using $|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}}|0\rangle$ compute $P = |\langle 0|\beta\rangle|^2$ Hint: Insert identity and use the relation above.

2. Supersymmetry?

Consider a spin- $\frac{1}{2}$ particle on a line and in a magnetic field. The Hamiltonian is:

$$\hat{H} = \left[\frac{1}{2}\hat{P}_x^2 + V(x)\right]\mathbb{1} + B(x)S^z \tag{1}$$

Suppose your wrote your V(x) and B(x) as the following:

$$V(x) = \frac{1}{2} (\partial_x W)^2 \qquad B(x) = \partial_x^2 W \qquad \hat{P}_x = -\mathbf{i}\partial_x \qquad S^z = \frac{1}{2}\boldsymbol{\sigma}^z$$

Where W(x) is an arbitrary function known as the superpotential. Now define the following operators:

$$Q = (\hat{P}_x - \mathbf{i}\partial_x W)\boldsymbol{\sigma}^+ \qquad Q^\dagger = (\hat{P}_x + \mathbf{i}\partial_x W)\boldsymbol{\sigma}^-$$

Where recall $\boldsymbol{\sigma}^{\pm} = \frac{1}{2} (\boldsymbol{\sigma}^x \pm \mathbf{i} \boldsymbol{\sigma}^y)$ are raising and lowering operators. Q and Q^{\dagger} are known as supercharges.

- (a) Show that $Q^2 = 0 = (Q^{\dagger})^2$
- (b) Show that $\{Q, Q^{\dagger}\} = 2\hat{H}$ where recall $\{A, B\} = AB + BA$
- (c) Show that $[Q, \hat{H}] = 0 = [Q^{\dagger}, \hat{H}]$
- (d) We can also define $F = \boldsymbol{\sigma}^{-} \boldsymbol{\sigma}^{+}$ which is also a symmetry of (1). Show [F, H] = 0What are [F, Q] and $[F, Q^{\dagger}]$?
- (e) Note that the operators Q, Q^{\dagger} aren't Hermitian but we can define $Q_1 = \frac{1}{2}(Q+Q^{\dagger})$ and $Q_2 = \frac{1}{2i}(Q-Q^{\dagger})$. What algebra do they satisfy?

Now what does supersymmetry do? Consider an eigenstate $|\Psi\rangle$ with energy E.

- (f) Compute $\langle \Psi | \hat{H} | \Psi \rangle$. What does this tell us about the ground state of the system?
- (g) Now also suppose that $W(x) \to \infty$ as $x \to \pm \infty$. Using the above constraint on the ground state construct the wavefunction $\Psi_0(x) = \begin{pmatrix} \Psi_+(x) \\ \Psi_-(x) \end{pmatrix}$ in terms of W(x). Hint: It may be helpful to write:

$$Q = \begin{pmatrix} 0 & \hat{P}_x - \mathbf{i}W'(x) \\ 0 & 0 \end{pmatrix} \qquad Q^{\dagger} = \begin{pmatrix} 0 & 0 \\ \hat{P}_x + \mathbf{i}W'(x) & 0 \end{pmatrix}$$

3. Fermions and Bosons

You may already know that SUSY mixes bosons and fermions. How does that appear in this model? Let's think about the spin Hilbert space $\mathcal{H}_2 = \operatorname{span}\{|0\rangle, |1\rangle\}$

I encourage you to think about these vectors as being labeled by occupation number: $|0\rangle$ has no fermion (it is bosonic) and $|1\rangle$ has a single fermion.¹

The fermionic creation and annihilation operators are then simply: $\hat{\psi}^{\dagger} \equiv \boldsymbol{\sigma}^{-}$ $\hat{\psi} \equiv \boldsymbol{\sigma}^{+}$ All states in the Hilbert space can be written as: $|\Psi\rangle = f_0(x)|0\rangle + f_1(x)\hat{\psi}^{\dagger}|0\rangle$

(a) Convince yourself the above is true and that $F = \hat{\psi}^{\dagger} \hat{\psi}$ is a number operator

Now let's show something non-trivial. I claim that all the excited $(E \neq 0)$ states are two fold degenerate into bosonic (F = 0) and fermionic (F = 1) pairs.

Let's do this explicitly:

¹I'm being slick with notation as $|0\rangle$, $|1\rangle$ are the computer science way of denoting the eigenvectors of σ^z for a spin system.

- (b) Define $|b\rangle$ to be a state of the form $\Psi(x) = \begin{pmatrix} \Psi_+(x) \\ 0 \end{pmatrix}$ and $|f'\rangle \equiv Q^{\dagger}|b\rangle$. Show that $|f'\rangle$ is fermionic and degenerate with $|b\rangle$
- (c) Show also that the properly normalized states are $|f\rangle = \frac{1}{\sqrt{2E}}|f'\rangle$

4. A Certain Magical Index

This model gives another interesting example of an *index* It's going to be useful to define the operator $(-1)^F$, the fermionic *parity*.

(a) Prove that $[(-1)^F, H] = 0 = \{(-1)^F, Q\}$

And finally the object known as the Witten index

$$\operatorname{Tr}\left[(-1)^{F}e^{-\beta H}\right] \tag{2}$$

The object above is interesting as it only depends on the space of groundstates which is independent of β and is invariant² under deforming $W(x) \to \lambda W(x)$

(b) Show that (2) is equal to the number of bosonic groundstates minus the number of fermionic groundstates.

So for non-zero Witten index there must be some zero modes annihilated by the supercharges. This implies SUSY is not *spontaneously broken*.

5. The Harmonic Oscillator Redux

Consider $W(x) = \frac{\omega}{2}x^2$ in the above problem.

- (a) Write the Hamiltonian. What are V(x) and B(x)?
- (b) What's the groundstate wavefunction? How does it depend on sign[ω]? What's the spectrum of the Hamiltonian?
- (c) Calculate the Witten index (2) as well as the partition function $Z(\beta) \equiv \text{Tr } e^{-\beta \hat{H}}$

There's a lot more to this story, including some very beautiful mathematics, but we'll have to pause here without the technology of the path integral.

²In this sense it is topological.