University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics C (Physics 212A) Fall 2015 Worksheet 6

Announcements

• The 212A web site is:

http://physics.ucsd.edu/~mcgreevy/f15/ .

Please check it regularly! It contains relevant course information!

Problems

1. Dilatations

Let's think about transformations of the form $x \to x' = e^{\lambda}x$ where λ is a real parameter. This is known as a *scale* transformation. Quantum mechanically we should be able to realize this transformation with a unitary operator: $U = e^{-i\lambda\hat{D}}$ where \hat{D} is hermitian. This is known as the *dilatation* generator.

- (a) Consider the action of $U|x\rangle$ to determine $[\hat{D}, \hat{x}]$ (Hint: Use the BCH expansion)
- (b) Use the Jacobi identity [[A, B], C] + [[B, C], A] + [[C, A], B] = 0 to derive $[\hat{D}, \hat{p}]$
- (c) Check that $\hat{D} = \frac{1}{2\hbar}(\hat{x}\hat{p} + \hat{p}\hat{x})$ satisfies these relations ¹

Now² consider a Hamiltonian of the form $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$ for which $\hat{D}V = 2\mathbf{i}V$ Such a potential would be *scale invariant*

- (d) Calculate $[\hat{D}, \hat{H}]$ explicitly
- (e) Show that $V(x) = \frac{1}{x^2}$ is an example of such a potential
- (f) Consider an energy eigenstate $|E\rangle$ and calculate $\langle E|[\hat{D}, \hat{H}]|E\rangle$ directly and with the result above. Do you see a problem?

2. Bogliubov Transformation

In our last discussion we solved a new Hamiltonian by defining a set of transformed creation/annihilation operators which satisfy the same algebra $[A, A^{\dagger}] = \mathbb{1}$

More generally consider $\hat{b} = \hat{a} \cosh \eta + \hat{a}^{\dagger} \sinh \eta$

¹One might wish to add a term like $-t\hat{H}$ to the definition to make it a conserved charge. ²Set $\hbar = 1$.

- (a) Show that $[\hat{b}, \hat{b}^{\dagger}] = 1$
- (b) Show that $\hat{b} = U\hat{a}U^{\dagger}$ for $U = e^{\frac{\eta}{2}(\hat{a}\hat{a} \hat{a}^{\dagger}\hat{a}^{\dagger})}$
- (c) Show for fermionic operators $\hat{c}^2 = 0 = (\hat{c}^{\dagger})^2$ and $\{\hat{c}, \hat{c}^{\dagger}\} = 1$ that $\hat{d} = \hat{c} \cos \theta + \hat{c}^{\dagger} \sin \theta$ is the analogous operator

Now consider the Hamiltonian

$$\hat{H} = \omega \hat{a}^{\dagger} \hat{a} + \frac{V}{2} (\hat{a} \hat{a} + \hat{a}^{\dagger} \hat{a}^{\dagger}) \tag{1}$$

(c) Diagonalize the Hamiltonian (1) using the \hat{b} operators for suitably chosen η

(d) Show there is a limit on V for which this Hamiltonian makes physical sense