University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics C (Physics 212A) Fall 2015 Worksheet 8

Announcements

• The 212A web site is:

 $http://physics.ucsd.edu/\sim mcgreevy/f15/$.

Please check it regularly! It contains relevant course information!

Problems

1. Charged Particle on a Ring

Consider the quantum mechanics of a particle of mass m and charge q on a circular hoop of radius R in the presence of an external magnetic field perpendicular to the plane of the hoop.

(You can set all these parameters to 1 if you like. I will adopt units where $\hbar = 1 = c$) Let $\phi(t)$ be the angular coordinate of the particle such that $\phi \equiv \phi + 2\pi$

The action is

$$S[\phi] = \int \mathrm{d}t \; \frac{m}{2} R^2 \dot{\phi}^2 + \left(\frac{\theta}{2\pi}\right) \dot{\phi} \tag{1}$$

The θ term is a "topological term" as we'll see.

(a) Show that if there is a azimuthally symmetric magnetic field passing through the ring, then θ is related to B by

$$\theta = q\Phi_B$$

where Φ_B is the magnetic flux through the ring.

- (b) Show that θ is a periodic parameter, i.e. theories with θ and $\theta \to \theta + 2\pi$ are equivalent.
- (c) Compute the canonical momentum associated with ϕ , and determine the Hamiltonian for this system.
- (d) Show that the θ term doesn't effect the classical equation of motion for ϕ .
- (e) Find the energies and wavefunctions by solving the Schrödinger equation. What happens to the eigenstates $|n, \theta\rangle$ and energies $E_n(\theta)$ as $\theta \to \theta + 2\pi$?

- (f) Suppose I do a gauge transformation $A \to A + \nabla \Lambda$ that "removes" the presence of the magnetic field. What Λ accomplishes this? Why does the spectrum not change?
- (g) Show that for $\frac{\theta}{2\pi} = \frac{2m+1}{2}$ for $m \in \mathbb{Z}$ the spectrum is two-fold degenerate

Now suppose I turn on an electric field in the xy-plane. $\vec{E} = (E_x \cos \phi, E_y \sin \phi, 0)$

- (h) Write the Hamiltonian for the system in the presence of this field
- (i) Consider $\frac{\theta}{2\pi} = \frac{1}{2} + \delta$ for $\delta \ll 1$ so that $|0\rangle$ and $|1\rangle$ are nearly degenerate. Write an effective Hamiltonian for this 2-state system, including the electric field.
- (j) Calculate the 'precession' frequency of the particle in this field keeping with the 2-state system idea.
- (k) Now suppose $E_y = E_x = E \cos \omega t$ varies in time. Suppose at t = 0 the particle is in state $|0\rangle$. What's the probability of the particle to be in $|1\rangle$ at a later time T? Show this probability is periodic and find the period T_0 . What's a physical constraint on ω for this picture to be valid?