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1. Classical Maxwell theory. Do Peskin problem 2.1.

2. Goldstone boson. Here is a simple example of the Goldstone phenomenon,

which I mentioned briefly in the lecture notes. Consider again the complex scalar

field from problem 2 of the first assignment.

Suppose the potential is

V (Φ?Φ) = g
(
Φ?Φ− v2

)2

where g, v are constants. The important features of V are that (1) it is only

a function of |Φ|2 = ΦΦ?, so that it preserves the particle-number symmetry

generated by q which was the hero of that problem, and (2) the minimum of

V (x) away from x = 0.

Treat the system classically. Write the action S[Φ,Φ?] in polar coordinates in

field space:

Φ(x, t) = ρeiθ

where both ρ, θ are functions of space and time.

(a) Consider constant field configurations, and show that minimizing the po-

tential fixes ρ but not the phase θ.

(b) Compute the mass2 of the ρ field about its minimum, m2
ρ = 1

2
∂2
ρV |ρ=v.

(c) Now ignore the deviations of ρ from its minimum (it’s heavy and slow and

hard to excite), but continue to treat θ as a field. Plug the resulting expres-

sion

Φ = veiθ(x,t)

into the action. Show that θ is a massless scalar field.

(d) How does the U(1) symmetry generated by q act on θ?

3. Gaussian identity.

Show that for a gaussian quantum system〈
eiKq

〉
= e−A(K)〈q2〉
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and determine A(K). Here 〈...〉 ≡ 〈0| ... |0〉. Here by ‘gaussian’ I mean that H

contains only quadratic and linear terms in both q and its conjugate variable p

(but for the formula to be exactly correct as stated you must assume H contains

only terms quadratic in q and p; for further entertainment fix the formula for

the case with linear terms in H).

I recommend using the path integral representation. Alternatively, you can use

the SHO operator algebra.

This result is useful for the following problem and in many other places.

4. Zero-phonon process.

We wish to understand the probability for a photon to hit (our crude model of)

a crystalline solid without exciting any vibrational excitations.

Fermi’s golden rule says that the probability for a transition from one state of

the lattice |Li〉 to another |Lf〉 is proportional to

W (Li → Lf ) = | 〈Lf |HL |Li〉 |2.

Here HL is the hamiltonian describing the interaction between the photon and

an atom in the lattice. For the first parts of the problem, use the following form

(to be justified in the last part of the problem):

HL = AeiKx + h.c. (1)

here x is the (center of mass) position operator of the atom in question; K is

a constant (the photon wavenumber), and (for the purposes of the first parts of

the problem) A is a constant. +h.c. means ‘plus the hermitian conjugate of the

preceding stuff’.

(a) Recalling that x (up to an additive constant) is part of a collection of coupled

harmonic oscillators:

x = nx+ qn

evaluate the “vacuum persistence amplitude” 〈0|HL |0〉. You will find the

result of problem 3 useful.

(b) From the previous calculation, you will find an expression that requires

you to sum over wavenumbers. Show that in one spatial dimension, the

probability for a zero-phonon transition is of the form

PMössbauer ∝ e−Γ lnL

where L is the length of the chain and Γ is a function of other variables.

Show that this infrared divergence is missing for the analogous model of
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crystalline solids with more than one spatial dimension. (Cultural remark:

these amplitudes are called ‘Debye-Waller factors’).

(c) Convince yourself that a coupling HL of the form (1) arises from the min-

imal coupling of the electromagnetic field to the constituent charges of the

atom, after accounting for the transition made by the radiation field when

the photon is absorbed by the atom. ‘Minimal coupling’ means replacing the

momentum operator of the atom p, with the gauge-invariant combination

p → p + A. You will also need to recall the form of the quantized electro-

magnetic field in terms creation and annihilation operators for a photon of

definite momentum K.
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