University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215A QFT Fall 2016 Assignment 9 ('Final Exam')

Due 11am Thursday, December 8, 2016

1. The magnetic moment of a Dirac fermion. [From L. Hall]

In this problem we consider the hamiltonian density

$$\mathfrak{h}_I = q \bar{\Psi} \gamma^\mu \Psi A_\mu$$
 .

As we discussed, this describes a local, Lorentz invariant, and gauge invariant interaction between a Dirac fermion field Ψ and a vector potential A_{μ} . In this problem, we will treat the vector potential, representing the electromagnetic field, as a fixed, classical background field.

Define single-particle states of the Dirac field by $\langle 0 | \Psi(x) | \vec{p}, s \rangle = e^{-\mathbf{i}px} u^s(p)$. We wish to show that these particles have a magnetic dipole moment, in the sense that in their rest frame, their (single-particle) hamiltonian has a term $h_{NR} \ni \mu_B \vec{S} \cdot \vec{B}$ where $\vec{S} = \frac{1}{2}\vec{\sigma}$ is the particle's spin operator.

- (a) q is a real number. What is required of A_{μ} for $H_I = \int d^3x \mathfrak{h}_I$ to be hermitian?
- (b) How must A_{μ} transform under partiy P and charge conjugation C in order for H_I to be invariant? How to electric and magnetic fields transform? Show that this allows for a magnetic dipole moment but not an electric dipole moment.
- (c) Show that in the non-relativistic limit

$$\bar{u}(p')\gamma^{\mu\nu}u'(p)F_{\mu\nu} = a\xi^{\dagger}\sigma\cdot\vec{B}\xi'$$

for some constant a (find a) where u, u' are positive-energy solutions of the Dirac equation with mass m and $u \xrightarrow{NR} \sqrt{m}(\xi, \xi), u' \xrightarrow{NR} \sqrt{m}(\xi', \xi')$ in the non-relativistic limit.

(d) Suppose that A_{μ} describes a magnetic field \vec{B} which is uniform in space and time.

Show that in the non-relativistic limit

$$\langle \vec{p}', s' | H_I | \vec{p}, s \rangle = \phi^3 (\vec{p} - \vec{p}') h(\xi, \xi', \vec{B})$$

and find the function $h(\xi, \xi', \vec{B})$. You may wish to use the Gordon identity. Rewrite the result in terms of single-particle states with non-relativistic normalization (*i.e.* $\langle \vec{p} | \vec{p}' \rangle_{NR} = \phi^3(p - p')$). Interpret *h* as a non-relativistic hamiltonian term saying that the gyromagnetic ratio of the electron is $-g \frac{|q|}{2m}$ with g = 2.

(e) [optional] How does the result change if we add the term

$$\Delta H = \frac{c}{M} \bar{\Psi} F_{\mu\nu} [\gamma^{\mu}, \gamma^{\nu}] \Psi ?$$

2. Electron-positron scattering.

Draw and evaluate the two diagrams which contribute to $e^+e^- \rightarrow e^+e^-$ (Bhabha) scattering at tree level in QED. Be careful about the relative sign of their contributions.

Compare with the case of $e^+e^- \rightarrow \mu^+\mu^-$ and with $e^-e^- \rightarrow e^-e^-$.

Do a subset of the following problems.

3. Non-relativistic interactions from QFT.

(a) Yukawa theory.

Consider $\Psi\bar{\Psi} \to \Psi\bar{\Psi}$ scattering in the Yukawa theory. Draw and evaluate the relevant Feynman diagrams.

Show that the force arising in the non-relativistic limit is attractive.

(b) Yukawa theory with distinguishable fermions. Consider two species of Dirac fermions, interacting with the same scalar field via Yukawa interactions

$$V = -g_1 \bar{\Psi}_1 \Psi_1 \phi - g_2 \bar{\Psi}_2 \Psi_2 \phi.$$

Show that if $g_1g_2 < 0$, the force between a Ψ_1 particle and a Ψ_2 particle is repulsive.

(c) Coulomb potential.

Derive from QED that the force between electrons is a repulsive $1/r^2$ force law!

(d) Pseudoscalar Yukawa theory.

Consider the theory of a massive Dirac fermion Ψ and a massive pseudoscalar φ interacting via the term

$$V_5 \equiv g_5 \bar{\Psi} \gamma^5 \Psi \varphi$$

Convince yourself that this theory is parity invariant.

List the Feynman rules.

Draw and evaluate the diagrams contributing to $\Psi\Psi \to \Psi\Psi$ scattering at leading order in g_5 .

Consider the non-relativistic limit, $m \gg |\vec{p}|$ and find the effective interaction hamiltonian. If you happen to find zero for the leading term, then it's not the leading term.

4. Meson scattering.

Consider the Yukawa theory again. Draw the Feynman diagram which gives the leading contribution to the process $\phi \phi \rightarrow \phi \phi$.

Derive the correct sign of the amplitude by considering the relevant matrix elements of powers of the interaction hamiltonian.

Evaluate the diagram in terms of a spinor trace and a momentum integral. Do not do the momentum integral. Suppose that the integral is cutoff at large k by some cutoff Λ . Estimate the dependence on Λ .

5. Electron-photon scattering at low energy.

Consider the process $e\gamma \to e\gamma$ at leading order.

Draw and evaluate the two diagrams.

Find $\frac{1}{4} \sum_{\text{spins/polarizations}} |\mathcal{M}|^2$.

Construct the two-body final-state phase space measure in the limit where the photon frequency is $\omega \ll m$ (the electron mass), in the rest frame of the electron. I suggest the following kinematical variables:

$$p_1 = (\omega, 0, 0, \omega), p_2 = (m, 0, 0, 0), p_4 = (\omega', \omega' \sin \theta, 0, \omega' \cos \theta), p_3 = p_1 + p_2 - p_4 = (E', p')$$

for the incoming photon, incoming electron, outgoing photon and outgoing electron respectively.

Find the differential cross section $\frac{d\sigma}{d\cos\theta}$ as a function of ω, θ, m . (The expression can be prettified by using the on-shell condition $p_3^2 = m^2$ to relate ω' to ω, θ . It is named after Klein and Nishina.)

Show that the limit $E \ll m$ gives the (Thomson) scattering cross section for classical electromagnetic radiation from a free electron.