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1. The magnetic moment of a Dirac fermion. [From L. Hall]

In this problem we consider the hamiltonian density

hI = qΨ̄γµΨAµ .

As we discussed, this describes a local, Lorentz invariant, and gauge invariant

interaction between a Dirac fermion field Ψ and a vector potential Aµ. In this

problem, we will treat the vector potential, representing the electromagnetic field,

as a fixed, classical background field.

Define single-particle states of the Dirac field by 〈0|Ψ(x) |~p, s〉 = e−ipxus(p). We

wish to show that these particles have a magnetic dipole moment, in the sense that

in their rest frame, their (single-particle) hamiltonian has a term hNR 3 µB ~S · ~B
where ~S = 1

2
~σ is the particle’s spin operator.

(a) q is a real number. What is required of Aµ for HI =
∫
d3xhI to be hermitian?

(b) How must Aµ transform under partiy P and charge conjugation C in order

for HI to be invariant? How to electric and magnetic fields transform?

Show that this allows for a magnetic dipole moment but not an electric

dipole moment.

(c) Show that in the non-relativistic limit

ū(p′)γµνu′(p)Fµν = aξ†σ · ~Bξ′

for some constant a (find a) where u, u′ are positive-energy solutions of the

Dirac equation with mass m and u
NR→
√
m(ξ, ξ), u′

NR→
√
m(ξ′, ξ′) in the

non-relativistic limit.

(d) Suppose that Aµ describes a magnetic field ~B which is uniform in space and

time.

Show that in the non-relativistic limit

〈~p′, s′|HI |~p, s〉 = /δ
3

(~p− ~p′)h(ξ, ξ′, ~B)
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and find the function h(ξ, ξ′, ~B). You may wish to use the Gordon identity.

Rewrite the result in terms of single-particle states with non-relativistic

normalization (i.e. 〈~p|~p′〉NR = /δ
3
(p − p′)). Interpret h as a non-relativistic

hamiltonian term saying that the gyromagnetic ratio of the electron is −g |q|
2m

with g = 2.

(e) [optional] How does the result change if we add the term

∆H =
c

M
Ψ̄Fµν [γ

µ, γν ]Ψ ?

2. Electron-positron scattering.

Draw and evaluate the two diagrams which contribute to e+e− → e+e− (Bhabha)

scattering at tree level in QED. Be careful about the relative sign of their contri-

butions.

Compare with the case of e+e− → µ+µ− and with e−e− → e−e−.

Do a subset of the following problems.

3. Non-relativistic interactions from QFT.

(a) Yukawa theory.

Consider ΨΨ̄ → ΨΨ̄ scattering in the Yukawa theory. Draw and evaluate

the relevant Feynman diagrams.

Show that the force arising in the non-relativistic limit is attractive.

(b) Yukawa theory with distinguishable fermions. Consider two species

of Dirac fermions, interacting with the same scalar field via Yukawa inter-

actions

V = −g1Ψ̄1Ψ1φ− g2Ψ̄2Ψ2φ.

Show that if g1g2 < 0, the force between a Ψ1 particle and a Ψ2 particle is

repulsive.

(c) Coulomb potential.

Derive from QED that the force between electrons is a repulsive 1/r2 force

law!

(d) Pseudoscalar Yukawa theory.

Consider the theory of a massive Dirac fermion Ψ and a massive pseudoscalar

ϕ interacting via the term

V5 ≡ g5Ψ̄γ
5Ψϕ.
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Convince yourself that this theory is parity invariant.

List the Feynman rules.

Draw and evaluate the diagrams contributing to ΨΨ → ΨΨ scattering at

leading order in g5.

Consider the non-relativistic limit, m� |~p| and find the effective interaction

hamiltonian. If you happen to find zero for the leading term, then it’s not

the leading term.

4. Meson scattering.

Consider the Yukawa theory again. Draw the Feynman diagram which gives the

leading contribution to the process φφ→ φφ.

Derive the correct sign of the amplitude by considering the relevant matrix ele-

ments of powers of the interaction hamiltonian.

Evaluate the diagram in terms of a spinor trace and a momentum integral. Do

not do the momentum integral. Suppose that the integral is cutoff at large k by

some cutoff Λ. Estimate the dependence on Λ.

5. Electron-photon scattering at low energy.

Consider the process eγ → eγ at leading order.

Draw and evaluate the two diagrams.

Find 1
4

∑
spins/polarizations |M|2.

Construct the two-body final-state phase space measure in the limit where the

photon frequency is ω � m (the electron mass), in the rest frame of the electron.

I suggest the following kinematical variables:

p1 = (ω, 0, 0, ω), p2 = (m, 0, 0, 0), p4 = (ω′, ω′ sin θ, 0, ω′ cos θ), p3 = p1+p2−p4 = (E ′, p′)

for the incoming photon, incoming electron, outgoing photon and outgoing elec-

tron respectively.

Find the differential cross section dσ
d cos θ

as a function of ω, θ,m. (The expression

can be prettified by using the on-shell condition p23 = m2 to relate ω′ to ω, θ. It

is named after Klein and Nishina.)

Show that the limit E � m gives the (Thomson) scattering cross section for

classical electromagnetic radiation from a free electron.
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