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1. Heisenberg picture fields.

Here we will try to understand in what sense the field momentum of a free scalar

field is π ∼ φ̇, and we will explain the factor of iω by which π and φ differ.

I usually think in what is called Schrödinger picture, where we evolve the states

in time

|ψ(t)〉 = U(t)† |ψ(0)〉 = e−iHt/~ |ψ(0)〉

and leave the operators alone. It is sometimes useful to define time-dependent

operators by implementing the change of basis associated with U on the opera-

tors1:

A(t) ≡ U(t)AU(t)† = e+iHt/~Ae−iHt/~.

First consider a simple harmonic oscillator,

H =
p2

2m
+

1

2
mω2q2 = ~ω

(
a†a +

1

2

)
with

q =

√
~

2mω

(
a + a†

)
=

√
~

2mω
2Re (a) .

p = −i

√
~mω

2

(
a− a†

)
=

√
m~ω

2
2Im (a) .

(a) Using the algebra satisfied by H and a, show that

q(t) ≡ e+iHtqe−iHt =

√
~

2mω
2Re

(
e−iωta

)
.

1 Recall that the signs are designed so that matrix elements are the same in either picture:

(〈φ(0)|U(t))︸ ︷︷ ︸
=〈φ(t)|

A
(
U(t)† |ψ(0)〉

)︸ ︷︷ ︸
|ψ(t)〉

= 〈φ(0)|
(
U(t)AU(t)†

)︸ ︷︷ ︸
A(t)

|ψ(0)〉

and the two pictures differ just by moving around parentheses.
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(b) Using the expression above, show that

p(t) ≡ e+iHtpe−iHt = m∂tq(t)

in agreement with what you would want from the Lagrangian formulation

and from classical mechanics.

The above was pretty simple, I hope. Now we consider a scalar quantum field

theory, in say d+ 1 = 1 + 1 dimensions:

H =

∫
ddx

(
π(x)2

2µ
+

1

2
µv2s

(
~∇φ · ~∇φ

)
+

1

2
m2φ2

)
=
∑
k

~ωk
(

a†kak +
1

2

)
.

φ(x) =
∑
k

√
~

2µωk

(
ei
~k·~xak + e−i

~k·~xa†k

)
,

π(x) =
1

i

∑
k

√
~µωk

2

(
ei
~k·~xak − e−i

~k·~xa†k

)
,

(c) Find ωk. (Note that I’ve added a mass term m2φ2, relative to the model we

studied in lecture. This is why I use µ instead of m for the object which

looks like the inertial mass.)

(d) Do a Legendre transformation to construct the action, S[φ] =
∫
dtddxL(φ, φ̇).

(e) Show that

φ(t, x) ≡ e+iHtφ(x)e−iHt =
∑
k

√
~

2µωk

(
ei
~k·~x−iωktak + e−i

~k·~x+iωkta†k

)
(f) Using the previous result, show that

π(t, x) ≡ e+iHtπ(x)e−iHt = µ∂tφ(t, x)

so that all is right with the world.

2. Complex scalar field and antiparticles

[This problem is related to Peskin problem 2.2.] So far we’ve discussed scalar

field theory with one real scalar field. The particles created by this field are their

own antiparticles.

To understand this statement better, consider a scalar field theory in d + 1

dimensions with two real fields φ1, φ2. Organize them into one complex field

Φ ≡ 1√
2

(φ1 + iφ2), with Φ? = 1√
2

(φ1 − iφ2), and let

S[Φ,Φ?] =

∫
ddxdt

(
1

2
µ∂tΦ∂tΦ

? − 1

2
µv2~∇Φ · ~∇Φ? − V (Φ?Φ)

)
.
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(a) Show that

S[Φ,Φ?] =

∫ (∑
i=1,2

(
A (∂tφi)

2 −B~∇φi · ~∇φi
)
− V

(
φ2
1 + φ2

2

))
,

and where A,B are constants you must determine. If V (q2) = 1
2
m2q2, notice

that the action is just the sum of two copies of the action of the theory we

considered previously.

(b) Show by doing the Legendre transformation that the associated hamiltonian

is

H =

∫
ddx

(
CΠΠ? +D~∇Φ · ~∇Φ? + V (ΦΦ?)

)
where C,D are constants you must determine, and the canonical momenta

are

Π =
∂L
∂Φ̇

=
1

2
µΦ̇?, Π? =

∂L
∂Φ̇?

=
1

2
µΦ̇

with the Lagrangian density L defined by S =
∫
dtddxL.

(c) This theory has a continuous symmetry under which Φ→ eiαΦ,Φ? → e−iαΦ?

with α a real constant. Show that the action S does not change if I make

this replacement. 2

(d) The existence of a continuous symmetry means a conserved charge – a her-

mitian operator which commutes with the Hamiltonian, which generates the

symmetry (this is the Emmy “Quantum” Nöther theorem). Show that

q ≡
∫
ddx i (Φ?Π? − ΠΦ)

generates this transformation, in the sense that the change in the field under

a transformation with infinitesimal α is

δΦ = iαΦ = −iα[q,Φ], and δΦ? = −iαΦ? = −iα[q,Φ?].

Show that [q,H] = 0.

2This is called a U(1) symmetry: it is a unitary rotation (hence ‘U’) on a one-dimensional (hence

‘(1)’) complex vector. Notice that on the real components φ1, φ2 it acts as a two-dimensional rotation:(
φ1
φ2

)
→
(

cosα − sinα

sinα cosα

)(
φ1
φ2

)
.

The name for this group is SO(2). So U(1) is the same as SO(2).
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(e) For the case where V (ΦΦ?) = m2ΦΦ? the hamiltonian is quadratic. Diago-

nalize it in terms of two sets of creation operators and annihilation operators.

You should find something of the form

Φ =

√
~
2µ

∑
k

1
√
ωk

(
eikxak + e−ikxb†k

)
. (1)

(f) Write the canonical commutators

[Φ(x),Π(x′)] = i~δ(x− x′), [Φ(x),Π?(x′)] = 0

(and the hermitian conjugate expressions) in terms of a and b.

(g) Rewrite q in terms of the mode operators.

(h) Evaluate the charge of each type of particle created by a†k and b†k
(i.e. find [q, a†]).

I claim that the particle created by a† is the antiparticle of that created

by b† in the sense that they have opposite quantum numbers. This means

that we can add terms to the hamiltonian by which they can annihilate each

other, without breaking any symmetries. What might such a term look like?
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