1. **Non-Abelian currents.** In previous homework, we studied a complex scalar field. Now, we make a big leap to two complex scalar fields, $\Phi_{\alpha=1,2}$, with

$$S[\Phi_{\alpha}] = \int d^d x dt \left(\frac{1}{2} \partial_\mu \Phi^*_\alpha \partial^\mu \Phi_\alpha - V (\Phi^*_\alpha \Phi_\alpha) \right)$$

Consider the objects

$$Q^i = \frac{1}{2} \int d^d x \left(\Pi^i_{\alpha} \Phi^*_\alpha \Phi^*_\beta \sigma^{i}_{\alpha\beta} + h.c. \right)$$

where $\sigma^{i=1,2,3}$ are the three Pauli matrices.

(a) What symmetries do these charges generate (i.e. how do the fields transform)? Show that they are symmetries of S.

(b) If you want to, show that $[Q^i, H] = 0$, where H is the Hamiltonian.

(c) Evaluate $[Q^i, Q^j]$. Hence, non-Abelian.

(d) To complete the circle, find the Noether currents J^i_μ associated to the symmetry transformations you found in part 1a.

(e) Generalize to the case of N scalar fields.

2. **More about 0+0d field theory.** Here we will study a bit more some field theories with no dimensions at all, that is, integrals.

Consider the case where we put a label on the field: $q \rightarrow q_a, a = 1..N$. So we are studying

$$Z = \int \prod_a dq_a e^{-S(q)}$$

Let

$$S(q) = \frac{1}{2} q_a K_{ab} q_b + T_{abcd} q_a q_b q_c q_d$$

where T_{abcd} is a collection of couplings. Assume K_{ab} is a real symmetric matrix.
(a) Show that the propagator has the form:

\[a \rightarrow b = (K^{-1})_{ab} = \sum_k \phi_a(k) \ast \frac{1}{k} \phi_b(k) \]

where \(\{k\} \) are the eigenvalues of the matrix \(K \) and \(\phi_a(k) \) are the eigenvectors in the \(a \)-basis.

(b) Show that in a diagram with a loop, we must sum over the eigenvalue label \(k \). (For definiteness, consider the order-\(g \) correction to the propagator.)

(c) Consider the case where \(K_{ab} = t (\delta_{a,b+1} + \delta_{a+1,b}) \), with periodic boundary conditions: \(a + N \equiv a \). Find the eigenvalues. Show that in this case if

\[T_{abcd}q_a q_b q_c q_d = \sum_a g q_a^4 \]

the \(k \)-label is conserved at vertices, i.e. the vertex is accompanied by a delta function on the sum of the incoming eigenvalues.

(d) (Bonus question) What is the more general condition on \(T_{abcd} \) in order that the \(k \)-label is conserved at vertices?

(e) (Bonus question) Study the physics of the model described in 2c.

Back to the case without labels.

(f) By a change of integration variable show that

\[Z = \int_{-\infty}^{\infty} dq \ e^{-S(q)} \]

with \(S(q) = \frac{1}{2} m^2 q^2 + g q^4 \) is of the form

\[Z = \frac{1}{\sqrt{m^2}} \mathcal{Z} \left(\frac{g}{m^4} \right) \]

This means you can make your life easier by setting \(m = 1 \), without loss of generality.

(g) Convince yourself (e.g. with Mathematica) that the integral really is expressible as a Bessel function.

(h) It would be nice to find a better understanding for why the partition function of (0+0)-dimensional \(\phi^4 \) theory is a Bessel function. Then find a Schwinger-Dyson equation for this system which has the form of Bessel’s equation for

\[K(y) \equiv \frac{1}{\sqrt{y}} e^{-a/y} \mathcal{Z} (1/y) \]

2
for some constant a. (Hint: I found it more convenient to set $g = 1$ for this part and use $\xi \equiv m^2$ as the argument. If you get stuck I can tell you what function to choose for the ‘anything’ in the S-D equation.)

(i) Make a plot of the perturbative approximations to the ‘Green function’ $G \equiv \langle q^2 \rangle$ as a function of g, truncated at orders 1 through 6 or so. Plot them against the exact answer.

(j) (Bonus problem) Show that $c_{n+1} \sim -\frac{2}{3}nc_n$ at large n (by brute force or by cleverness).

3. **Combinatorics from 0-dimensional QFT.** [This is a bonus problem.]

Catalan numbers $C_n = \frac{(2n)!}{n!(n+1)!}$ arise as the answer to many combinatorics problems (beware: there is some disagreement about whether this is C_n or C_{n+1}).

One such problem is: count random walks on a 1d chain with $2n$ steps which start at 0 and end at 0 without crossing 0 in between.

Another such problem is: in how many ways can $2n$ (distinguishable) points on a circle be connected by chords which do not intersect within the circle.

Consider a zero-dimensional QFT with the following Feynman rules:

- There are two fields h and l.
- There is an $\sqrt{t}h^2l$ vertex in terms of a coupling t.
- The bare l propagator is 1.
- The bare h propagator is 1.
- All diagrams can be drawn on a piece of paper without crossing.\(^1\)
- There are no loops of h.

The last two rules can be realized from a lagrangian by introducing a large N (below).

(a) Show that the full two-point green’s function for h is

$$G(t) = \sum_n t^n C_n$$

\(^1\)An annoying extra rule: All the l propagators must be on one side of the h propagators. You’ll see in part 3f how to justify this.
the generating function of Catalan numbers.

(b) Let $\Sigma(t)$ be the sum of diagrams with two h lines sticking out which may not be divided into two parts by cutting a single intermediate line. (This property is called 1PI (one-particle irreducible), and Σ is called the “1PI self-energy of h”. We’ll use this manipulation all the time later on.) Show that $G(t) = \frac{1}{1 - \Sigma(t)}$.

(c) Argue by diagrams for the equation (sometimes this is also called a Schwinger-Dyson equation)

\[
\Sigma = G(t) \tag{1}
\]

where Σ is the 1PI self-energy of h.

(d) Solve this equation for the generating function $G(t)$.

(e) If you are feeling ambitious, add another coupling N^{-1} which counts the crossings of the l propagators. The resulting numbers can be called Touchard-Riordan numbers.

(f) How to realize the no-crossings rule? Consider

\[
L = \frac{\sqrt{t}}{\sqrt{N}} l_{\alpha \beta} h_{\alpha} h_{\beta} + \sum_{\alpha, \beta} l_{\alpha \beta}^2 + \sum_{\alpha} h_{\alpha}^2
\]

where $\alpha, \beta = 1 \cdots N$. By counting index loops, show that the dominant diagrams at large N are the ones we kept above. Hint: to keep track of the index loops, introduce (‘t Hooft’s) double-line notation: since l is a matrix, it’s propagator looks like: $\beta \cdots \alpha$, while the h propagator is just one index line $\alpha \cdots \alpha$, and the vertex is \circ. If you don’t like my ascii diagrams, here are the respective pictures: $\langle l_{\alpha \beta} l_{\alpha \beta} \rangle = \overset{\alpha}{\circ} \cdots \overset{\alpha}{\circ}$, $\langle h_{\alpha} h_{\alpha} \rangle = \overset{\alpha}{\circ} \cdots \overset{\alpha}{\circ}$ and the hhl vertex is: $\overset{\alpha}{\circ} \overset{\alpha}{\circ} \overset{\alpha}{\circ}$.

(g) Use properties of Catalan numbers to estimate the size of non-perturbative effects in this field theory.
(h) There are many other examples like this. Another similar one is the relationship between symmetric functions and homogeneous products. A more different one is the enumeration of planar graphs. For that, see BIPZ.

4. Brain-warmer: the identity does nothing twice. Check our relativistic state normalization by squaring the expression for the identity in the 1-particle sector:

\[\mathbb{1}_1^2 = \mathbb{1}_1 = \int \frac{d^d p}{2\omega_p} |\vec{p}\rangle \langle \vec{p}|. \]