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1. Brain-warmer: Scalar particle scattering cross-sections.

What is the leading-order differential cross-section dσ
dΩ

for 2→ 2 snucleon-snucleon

scattering in d = 3 space dimensions in the center-of-mass frame?

What is the total cross section in the limit that the snucleons are massless?

2. Lorentz algebra.

(a) Check that the so(1, 3) algebra indeed factorizes into su(2)L × su(2)R when

written in terms of ~J± = 1
2

(
~J ± i ~K

)
.

(b) Show that given a collection of k matrices satisfying {γµ, γν} = 2ηµν (the

Clifford algebra), we can make a k-dimensional representation of SO(1, d)

with generators

Jµν =
i

4
[γµ, γν ].

As an intermediate step, it is helpful to show that

[Jµν , γρ] = γµηνρ − γνηρµ.

Convince yourself that this last equation says that γµ transforms as a four-

vector, i.e.

[γµ, JµνDirac] = (Jρσvector)
µ
νγ

ν .

(c) Given a left-handed Weyl spinor ξL and a right-handed Weyl spinor ΨR,

show that the combination

ξLσ
µψR

transforms as a four-vector. Show that

ψRσ̄
µξL

does too.
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3. Brain warmer: Z2 symmetry of real scalar field theory.

What does the operator

U ≡ eiπ
∑
k a
†
kak

do to the real scalar field

φ(x)→ φ′(x) = Uφ(x)U †

whose ladder operators are a, a† ?

For which Lagrangians is this a symmetry?

4. Charge conjugation in complex scalar field theory.

Consider again a free complex Klein-Gordon field Φ. Define a discrete symmetry

operation (charge conjugation) C, by

Φ(x) 7→ CΦ(x)C−1 = ηcΦ
†(x)

where C is a unitary operator, and ηc is an arbitrary phase factor. Assume that

the vacuum is invariant under charge conjugation: C |0〉 = |0〉.

(a) Show that the free lagrangian is invariant under C , but the particle number

current jµ changes sign.

(b) Show that the annihilation operators satisfy

CakC
−1 = ηcbk, CbkC

−1 = η?cak

and hence show that C interchanges particle and antiparticle states, up to

a phase.

5. Parity symmetry of real scalar field theory.

Under the parity transformation

~x 7→ ~x′ = −~x

a real Klein-Gordon transforms as

φ(t, ~x) 7→ Pφ(t, x)P−1 = ηpφ(t,−~x) (1)

where P is unitary and ηP = ±1 is the intrinsic parity of the field φ. Again

assume P |0〉 = |0〉 .

(a) Show that the parity transformation preserves the free action, for both values

of ηP .
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(b) Show that an arbitrary n-particle state transforms as

P
∣∣∣~k1, · · ·~kn

〉
= ηnP

∣∣∣−~k1, · · · ,−~kn
〉
.

(c) Here we give an explicit realization of the parity operator. Let

P1 ≡ e−i
π
2

∑
k a
†
kak , P2 ≡ eiηp

π
2

∑
k a
†
ka−k .

Show that

P1akP
−1
1 = iak, P2akP

−1
2 = −iηpa−k.

Hint: Use the following version of the Campbell-Baker-Hausdorff formula

eiαABe−iαA =
∞∑
n=0

(iα)n

n!
Bn

where B0 ≡ B and Bn = [A,Bn−1] for n = 1, 2.....

Show that P ≡ P1P2 is unitary, and satisfies (1).

6. Action on the current.

Consider a complex scalar field. Using the results from problems 4 and 5, find

the action of parity on the particle current jµ 7→ PjµP−1 and jµ 7→ CjµC−1.

(You’ll have to extend the action of P from the case of a real field to the complex

case.)

7. Other bases for gamma matrices.

Many different bases of gamma matrices are frequently used by humans. You

may read on the internet someone telling you that the gamma matrices are

γ̃0 =

(
12×2 0

0 −12×2

)
, γ̃i =

(
0 σi

−σi 0

)
and think that I have lied to you. This basis is useful for studying the non-

relativistic limit. The Weyl basis which we introduced in lecture makes manifest

the reducibility of the Dirac spinor into L plus R Weyl spinors. Find the unitary

matrix U which relates them γ̃µ = UγµU †.
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