University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215A QFT Fall 2017 Assignment 8

Due 11am Tuesday, November 28, 2017

1. Brain-warmer: Scalar particle scattering cross-sections.

What is the leading-order differential cross-section $\frac{d\sigma}{d\Omega}$ for $2 \rightarrow 2$ snucleon-snucleon scattering in d = 3 space dimensions in the center-of-mass frame?

What is the total cross section in the limit that the snucleons are massless?

2. Lorentz algebra.

- (a) Check that the so(1,3) algebra indeed factorizes into $su(2)_L \times su(2)_R$ when written in terms of $\vec{J^{\pm}} = \frac{1}{2} \left(\vec{J} \pm \mathbf{i} \vec{K} \right)$.
- (b) Show that given a collection of k matrices satisfying $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$ (the Clifford algebra), we can make a k-dimensional representation of SO(1, d) with generators

$$J^{\mu\nu} = \frac{\mathbf{i}}{4} [\gamma^{\mu}, \gamma^{\nu}].$$

As an intermediate step, it is helpful to show that

$$[J^{\mu\nu},\gamma^{\rho}] = \gamma^{\mu}\eta^{\nu\rho} - \gamma^{\nu}\eta^{\rho\mu}.$$

Convince yourself that this last equation says that γ^{μ} transforms as a four-vector, *i.e.*

$$[\gamma^{\mu}, J^{\mu\nu}_{\text{Dirac}}] = (J^{\rho\sigma}_{\text{vector}})^{\mu}{}_{\nu}\gamma^{\nu}.$$

(c) Given a left-handed Weyl spinor ξ_L and a right-handed Weyl spinor Ψ_R , show that the combination

$$\xi_L \sigma^\mu \psi_R$$

transforms as a four-vector. Show that

$$\psi_R \bar{\sigma}^\mu \xi_L$$

does too.

3. Brain warmer: \mathbb{Z}_2 symmetry of real scalar field theory.

What does the operator

$$U \equiv e^{\mathbf{i}\pi\sum_k \mathbf{a}_k^{\mathsf{T}} \mathbf{a}_k}$$

do to the real scalar field

$$\phi(x) \to \phi'(x) = U\phi(x)U^{\dagger}$$

whose ladder operators are $\mathbf{a}, \mathbf{a}^{\dagger}$?

For which Lagrangians is this a symmetry?

4. Charge conjugation in complex scalar field theory.

Consider again a free complex Klein-Gordon field Φ . Define a discrete symmetry operation (charge conjugation) C, by

$$\Phi(x) \mapsto C\Phi(x)C^{-1} = \eta_c \Phi^{\dagger}(x)$$

where C is a unitary operator, and η_c is an arbitrary phase factor. Assume that the vacuum is invariant under charge conjugation: $C|0\rangle = |0\rangle$.

- (a) Show that the free lagrangian is invariant under C , but the particle number current j^{μ} changes sign.
- (b) Show that the annihilation operators satisfy

$$C\mathbf{a}_k C^{-1} = \eta_c \mathbf{b}_k, \quad C\mathbf{b}_k C^{-1} = \eta_c^* \mathbf{a}_k$$

and hence show that C interchanges particle and antiparticle states, up to a phase.

5. Parity symmetry of real scalar field theory.

Under the parity transformation

$$\vec{x} \mapsto \vec{x}' = -\vec{x}$$

a real Klein-Gordon transforms as

$$\phi(t, \vec{x}) \mapsto P\phi(t, x)P^{-1} = \eta_p \phi(t, -\vec{x}) \tag{1}$$

where P is unitary and $\eta_P = \pm 1$ is the *intrinsic parity* of the field ϕ . Again assume $P |0\rangle = |0\rangle$.

(a) Show that the parity transformation preserves the free action, for both values of η_P .

(b) Show that an arbitrary n-particle state transforms as

$$P\left|\vec{k}_{1},\cdots\vec{k}_{n}\right\rangle = \eta_{P}^{n}\left|-\vec{k}_{1},\cdots,-\vec{k}_{n}\right\rangle.$$

(c) Here we give an explicit realization of the parity operator. Let

$$P_1 \equiv e^{-\mathbf{i}\frac{\pi}{2}\sum_k \mathbf{a}_k^{\dagger} \mathbf{a}_k}, \quad P_2 \equiv e^{\mathbf{i}\eta_p \frac{\pi}{2}\sum_k \mathbf{a}_k^{\dagger} \mathbf{a}_{-k}}.$$

Show that

$$P_1\mathbf{a}_k P_1^{-1} = \mathbf{i}\mathbf{a}_k, \quad P_2\mathbf{a}_k P_2^{-1} = -\mathbf{i}\eta_p\mathbf{a}_{-k}.$$

Hint: Use the following version of the Campbell-Baker-Hausdorff formula

$$e^{\mathbf{i}\alpha A}Be^{-\mathbf{i}\alpha A} = \sum_{n=0}^{\infty} \frac{(\mathbf{i}\alpha)^n}{n!} B_n$$

where $B_0 \equiv B$ and $B_n = [A, B_{n-1}]$ for $n = 1, 2, \dots$ Show that $P \equiv P_1 P_2$ is unitary, and satisfies (1).

6. Action on the current.

Consider a complex scalar field. Using the results from problems 4 and 5, find the action of parity on the particle current $j^{\mu} \mapsto P j^{\mu} P^{-1}$ and $j^{\mu} \mapsto C j^{\mu} C^{-1}$. (You'll have to extend the action of P from the case of a real field to the complex case.)

7. Other bases for gamma matrices.

Many different bases of gamma matrices are frequently used by humans. You may read on the internet someone telling you that the gamma matrices are

$$\tilde{\gamma}^0 = \begin{pmatrix} \mathbb{1}_{2 \times 2} & 0\\ 0 & -\mathbb{1}_{2 \times 2} \end{pmatrix}, \quad \tilde{\gamma}^i = \begin{pmatrix} 0 & \sigma^i\\ -\sigma^i & 0 \end{pmatrix}$$

and think that I have lied to you. This basis is useful for studying the non-relativistic limit. The Weyl basis which we introduced in lecture makes manifest the reducibility of the Dirac spinor into L plus R Weyl spinors. Find the unitary matrix U which relates them $\tilde{\gamma}^{\mu} = U \gamma^{\mu} U^{\dagger}$.