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1. Brain-warmer. Check that

(p · σ) (p · σ̄) = p2.

2. Symmetries of the Dirac lagrangian.

(a) Find the Noether currents jµ and jµ5 associated with the transformations

Ψ → e−iαΨ and Ψ → e−iαγ
5
Ψ of a free Dirac field. Show by explicit calcu-

lation that the former is conserved and the latter is conserved if m = 0.

(b) Find the conserved currents associated with the Lorentz symmetry Ψ 7→
Λhalf(θ, β)Ψ of the Dirac Lagrangian. Show that the conserved charge takes

the form mentioned in lecture

Jµν =

∫
space

(
J µν

orbital + Ψ†JµνDiracΨ
)

where J µν
orbital has the form it would have for a scalar field, and JµνDirac ≡

i
4
[γµ, γν ] are the matrices satisfying the Lorentz algebra. Convince yourself

that this matrix specifies how the current acts in the one-particle sector.

3. Majorana mass.

(a) Show that a majorana mass term for a Weyl fermion

Lm = mψtRiσ
2ψR + h.c. = m (ψR)α ε

αβ (ψR)β + h.c.

is Lorentz invariant, but violates particle number. Figure out what the +h.c.

is explicitly.

(b) Find the equations of motion (don’t forget the kinetic term).

(c) Why isn’t (ψR)α ε
αβ (ψR)β

?
= 0, given the antisymmetry under α↔ β?

(d) Take a 4-component Dirac field Ψ(x) =

(
ΨL

ΨR

)
, and identify ΨL = χ,ΨR =

iσ2χ?, where χ is a Weyl spinor. Compare with the previous action.
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4. Negative-energy solutions of the Dirac equation. Check that Ψ(x) =

v(p)e+ip·x with

vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, s = 1, 2

solves the Dirac equation if p2 = m2 and p0 > 0.

Assuming that ηs comprise an orthonormal basis of 2× 2 spinors, check that∑
s=1,2

vsv̄s = /p−m.

Check that (vs)† (p)vs
′
(p) = 2ωpδ

ss′ . (You might want to choose ~p = ẑp3 and a

basis of σ3 eigenstates to do this.)

5. Supersymmetry. A continuous symmetry which mixes bosons and fermions is

called supersymmetry.

(a) The simplest example of a supersymmetric field theory is the theory of a

free complex boson and a free Weyl fermion, with Lagrangian is

L = ∂µφ
?∂µφ+ χ†iσ̄µ∂µχ+ F ?F.

Here F is an auxiliary field whose purpose is to make the supersymmetry

transformations look nice. Show that the action is invariant under

δφ = −iεTσ2χ, δχ = εF + σ · ∂φσ2ε?, δF = −iε†σ̄ · ∂χ (1)

where the symmetry parameter ε is a 2-component spinor of Grassmann

numbers.

(b) Show that the term

∆L =

(
mφF +

1

2
imχTσ2χ

)
+ h.c.

is also invariant under the transformation (1). Eliminate F from the full

Lagrangian L + ∆L by solving its equations of motion, and show that the

fermion and boson fields are given the same mass.

(c) We can include supersymmetric interactions as well. Show that the following

field theory is supersymmetric:

L = ∂µφ
?
i∂

µφi + χ†i iσ̄ · ∂χi + F ?
i Fi +

(
Fi∂φiW +

i

2
∂φi∂φjWχTi σ

2χj + h.c.

)
where i = 1..n and W = W (φ) is an arbitrary function of the φi, called the

superpotential. For the simple case n = 1 and W = gφ3/3 write out the field

equations for φ and χ after eliminating F .
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6. The magnetic moment of a Dirac fermion. [From L. Hall]

In this problem we consider the hamiltonian density

hI = qΨ̄γµΨAµ .

As we discussed, this describes a local, Lorentz invariant, and gauge invariant

interaction between a Dirac fermion field Ψ and a vector potential Aµ. In this

problem, we will treat the vector potential, representing the electromagnetic field,

as a fixed, classical background field.

Define single-particle states of the Dirac field by 〈0|Ψ(x) |~p, s〉 = e−ipxus(p). We

wish to show that these particles have a magnetic dipole moment, in the sense that

in their rest frame, their (single-particle) hamiltonian has a term hNR 3 µB ~S · ~B
where ~S = 1

2
~σ is the particle’s spin operator.

(a) q is a real number. What is required of Aµ for HI =
∫
d3xhI to be hermitian?

(b) How must Aµ transform under parity P and charge conjugation C in order

for HI to be invariant? How do the electric and magnetic fields transform?

Show that this allows for a magnetic dipole moment but not an electric

dipole moment.

(c) Show that in the non-relativistic limit

ū(p′)γµνu′(p)Fµν = aξ†σ · ~Bξ′

for some constant a (find a). Recall that γµν ≡ 1
2
[γµ, γν ]. Here u, u′ are

positive-energy solutions of the Dirac equation with mass m and

u
NR→
√
m(ξ, ξ), u′

NR→
√
m(ξ′, ξ′)

in the non-relativistic limit.

(d) Suppose that Aµ describes a magnetic field ~B which is uniform in space and

time.

Show that in the non-relativistic limit

〈~p′, s′|HI |~p, s〉 = /δ
3

(~p− ~p′)h(ξ, ξ′, ~B)

and find the function h(ξ, ξ′, ~B). You may wish to use the Gordon identity.

Rewrite the result in terms of single-particle states with non-relativistic

normalization (i.e. 〈~p|~p′〉NR = /δ
3
(p − p′)). Interpret h as a non-relativistic

hamiltonian term saying that the gyromagnetic ratio of the electron is −g |q|
2m

with g = 2.

(e) [optional] How does the result change if we add the term

∆H =
c

M
Ψ̄Fµν [γ

µ, γν ]Ψ ?
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