
Lecture 1: Lightning Overview

McGreevy

September 6, 2007

Reading: Polchinski §1.1, 3.1, begin §1.2-1.4, GSW chapter 1 (I find that GSW chapter 1 is worth
rereading once a year or so.).

Outline of this lecture:

1. Structure of string perturbation theory.

2. Compactification

3. Superstrings

4. Non-perturbative issues

5. Motivations

1 Big picture

In this first lecture, the goal is to convey the basic structure of the beast under study, and to
consider what it might be good for. There will many gaps, which we will start to fill in Lecture
2. At the beginning I will assume you have some reason for wanting to know about string theory,
then we’ll discuss what such reasons might exist.

We begin with the seemingly silly idea that maybe we’ve been wrong all along about particles, and
maybe we should consider the dynamics of one-dimensional objects instead. They may be closed
(i.e. without boundary) or open, oriented or unoriented. We’d like to try to generalize for such
creatures the 1st quantized Feynman path integral expression for a transition amplitude

∫ x(τ2)=x2

x(τ1)=x1

[Dx(τ)] eiS[x(τ)] = 〈x2; τ2|x1; τ1〉

as a sum over trajectories interpolating between specified inital and final states. Here x(τ) is a
map from the worldline of the particle into the target space, which has some coordinates xµ. For
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This figure was stolen from A. Uranga’s notes. It shows how different vibrational modes
of the string give particles with different spin.

a massive scalar particle, S[x] = m
∫

ds = m
∫ τ2
τ1

dτ
√

ẋ2, proportional to the length is a good
worldline action. This has the important property that it is invariant under reparametrizations of
the worldline τ 7→ τ̃(τ). If it weren’t there would be some correct parametrization, which would be
ridiculous.

The object we want will be a sum over paths the string can take
∫

string worldsheet trajectories
[DX(τ, σ)] eiSws [X(τ,σ)].

Can we define this sum over string embeddings? Notice that we can try to specify our initial and
final configurations as disconnected loops.

What might be good about this? Good Thing number 1: many particles from vibrational modes.
From far away, meaning when probed at energies E ≪ Ms, they look like particles. This sug-
gests that there might be some kind of unification, where all the particles (different spin, different
quantum numbers) might be made up of one kind of string.

To see other potential Good Things about this replacement of particles with strings, let’s consider
how interactions are included. In field theory, we can include interactions by specifying initial and
final particle states (say, localized wavepackets), and summing over all ways of connecting them,
e.g. by position-space feynman diagrams. To do this, we need to include all possible interaction
vertices, and integrate over the spacetime points where the interactions occur. UV divergences
arise when these points collide.

To do the same thing in string theory, we see that we can now draw smooth diagrams with no
special points (see figure). For closed strings, this is just the sewing together of pants. A similar
procedure can be done for open strings (though we will see that we must also attach handles there).

So, Good Thing Number Two is the fact that one string diagram corresponds to many feynman
diagrams. Next let’s ask
Q: where is the interaction point?
A: nowhere. It’s in different places in different Lorentz frames. This is a first indication that strings
will have soft UV behavior (Good Thing Number Three). They are floppy at high energies.

The crucial point: near any point in the worldsheet (contributing to some amplitude), it is just free
propagation. This implies a certain uniqueness (Good Thing Number Four): once the free theory
is specified, the interactions are determined. The structure of string perturbation theory is very
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Crudely rendered perturbative interactions of closed strings. Time goes upwards. Slicing
this picture by horizontal planes shows that these are diagrams which contribute to the
path integral for 2 to 2 scattering. Tilting the horizontal plane corresponds to boosting
your frame of reference and moves the point where you think the splitting and joining
happened.

rigid; it is very difficult to mess with it (e.g. by including nonlocal interactions) without destroying
it. 1

We’ll talk much more about what the worldsheet action Sws is. The simplest guess is that it should
just be the area of the embedded surface, times some factor to make up the dimensions:

Sws = T × Area.

This is called the Nambu-Goto action. The factor T is called the string tension, because it suppresses
worldsheets that are floppy. It has units of mass2 and sets the scale of the whole discussion. It
appears often and has many names:

T ≡ M2
s ≡ l−2

s ≡ 1

4πα′ .

An important point about this action is that it shouldn’t depend on how we parametrize it. What
coordinates are special? None. This amounts to a principle (a useful one) of general coordinate
invariance on the worldsheet. This is familiar from general relativity, and for the same reasons, one
way to implement this principle is to introduce a dynamical metric γab on the worldsheet. We will
find a relation of the form:

∫

[DX(τ, σ)] eiSHORRIBLE [X(τ,σ)]∼≡
∫

[DX(τ, σ) Dγ(τ, σ)] eiSNICE [X(τ,σ),γ].

In this equation, SHORRIBLE here is the Nambu-Goto action proportional to the area of the em-
bedding, SNICE is the ‘Polyakov’ action

SNICE = T

∫

dσdτ
√

γγab∂aX
µ∂bXµ.

(µ, ν = 0..D − 1 are target space indices, a, b = 1, 2 are worldsheet indices.) 2

1Why stop at one-dimensional objects? Why not move up to membranes? It’s still true that the interaction points

get smoothed out. But the divergences on the worldvolume are worse. d = 2 is a sort of compromise. In fact, some

sense can be made of the case of 3-dimensional base space, using the BFSS matrix theory. They turn out to be

already 2d quantized! The spectrum is a continuum, corresponding to the degree of freedom of bubbling off parts of

the worldvolume. It’s not entirely clear to me what to make of this.
2The strange symbol in the above relation should be read ‘is defined to be approximately equal to,’ or something

like that. The basic issue is that the left hand side is hard to define because of the sqrt. What we will actually show

is that the two actions are classically the same.
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This Polyakov action is more symmetric, more redundant. There’s an extra redundancy, Weyl
invariance, under which

γab 7→ Λγab

which didn’t act on the Nambu-Goto description at all, so is a gauge symmetry. The Polyakov
action is just the kinetic term for a free boson coupled to (2d) gravity.

What’s 2d gravity? Locally, it’s nothing: γab = γba has n(n+1)/2|n=2 = 3 independent components.
There are two independent coordinate redefinitions we can do, leaving one degree of freedom left
over. In fact, any two-dimensional metric is (locally) conformally flat:

ds2 = e2w(σ,τ)(dσ2 + dτ2),

i.e. flat up to some (position-dependent) scale factor. Choosing these coordinates on the worldsheet
is called ‘conformal gauge’.

We can then try to use the extra Weyl redundancy to eliminate the remaining metric degree of
freedom, w. But...

Important Plot Twist: The effect of some reparametrizations on the form of the metric

can be undone by a Weyl transformation. Let’s go to light cone coordinates σ± = 1√
2
(σ± τ),

where the conformal gauge metric looks like

ds2 = e2w(σ,τ)dσ+dσ−.

Consider a coordinate change of the form

(σ+, σ−) 7→ (σ̃+(σ+), σ̃−(σ−))

(the important thing here is that σ̃± depends only on σ±). This is called a conformal transformation.
It leads to

ds2 = e2w(σ,τ)

(

∂σ+

∂σ̃+

∂σ−

∂σ̃−

)

dσ̃+dσ̃−,

it just changes the overall factor in the metric, and hence preserves coordinate angles (though not
coordinate lengths). Hence it can be absorbed by a Weyl transformation.

Thus, conformal invariance is a gauge symmetry left unfixed by our choice of conformal gauge.

1.1 spectrum of closed bosonic string

Now we are ready to quantize the closed bosonic string (!). The equation of motion for the X fields
(just free massless bosons!) is

0 = (∂2
σ + ∂2

τ )Xµ = ∂σ+∂σ−Xµ

whose solution is a superposition of leftmovers and rightmovers:

Xµ(σ, τ) = Xµ
L(σ+) + Xµ

R(σ−).
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When we put the theory on a circle these have mode expansions

Xµ(σ, τ) =
∑

n

einσ+

α̃µ
n +

∑

n

einσ−

αµ
n.

Canonical quantization ([x, p] = i) leads to the commutation relations

[αµ
n, αν

m] = mδn+mηµν .

(Notice that if the target space has Minkowski signature, there is a scary sign on the RHS for
µ = ν = 0. More about this next week.) So this is just a bunch of SHOs.

All the complications (and the resolution of the scary sign) are in the constraints arising from the
coupling to 2d gravity: although we gauged away the metric, we must still impose its equation of
motion (it’s like a lagrange multiplier) on physical states. Its EOM

0 =
δS

δγab
= Tab

says that the worldsheet stress tensor should vanish. This includes, in particular, the hamiltonian

H = p2 + N̂ + const,

where pµ ≡ αµ
0 is the COM momentum of the string, and N̂ is an operator that counts the number

of excited oscillator modes. The condition that this vanishes is of the form

0 = p2 + m2

which is reasonably called the mass-shell condition and tells us the target-space mass of a string
state in terms of its worldsheet data.3

Now we can build physical states. 4 The result looks like

|0〉 T m2 = −M2
s

α
{µ
−1α̃

ν}
−1|0〉 G{µν} m2 = 0

α
[µ
−1α̃

ν]
−1|0〉 B[µν] m2 = 0

αµ
−1α̃−1 µ]|0〉 Φ m2 = 0

αµ1

−1α
µ2

−1...α
µn−1

−1 α̃µn

−n|0〉 Tµ1...µn
m2

n = nM2
s

...

(where [..] is meant to indicate antisymmetrization of indices, {..} is meant to indicate symmetriza-
tion of indices). A massless symmetric tensor like Gµν which interacts must couple to stress energy,
and hence is a graviton. Using the machinery we’ll build from the above picture, this mode can
be seen to participate in nontrivial scattering amplitudes, which indeed reduce to those computed
from GR at low energies.

3once we figure out the additive constant.
4There’s one more important constraint I didn’t mention, called level-matching which says that the number of right-

moving excitations N̂ and the number of left-moving excitations
˜̂
N should be equal. This follows from demanding

that there be no special point on the worldsheet.
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1.2 effective action for small fluctuations

The action which reproduces these scattering amplitudes for the small fluctuations is (at tree level):

∫

dDx
√

G e−2Φ
(

R − c1(∇Φ)2 + c2HMNP HMNP + · · ·
)

+ tachyonterms

A few comments about this.

1. The modes enumerated in the spectrum above are the fluctuations of these fields. There
should be little deltas in front of them.

2. The massless scalar Φ is called the dilaton. This is because of how it sits in front of the above
action – its vev determines the coupling constant:

〈e−2Φ〉 ≡ 1

g2
s

.

This is exciting, since it means that the coupling can be determined dynamically.

3. Actually this is all true only if D = 26! Otherwise the Weyl symmetry, which we need to
eliminate the scale factor of the metric, is anomalous.

4. The fact that the mass2 of the field T (T is for Tachyon) is negative means that this vacuum
around which we’re doing perturbation theory is unstable. To what is still a bit of a mystery.
The best guess is Nothing, meaning a much more serious kind of Nothing than just empty
space. Nevertheless, we’ll spend a lot of time thinking about the bosonic string in perturbation
theory.

Given that we don’t have a tachyon in our spectrum, or 26 dimensions, how can we change this story
to get a more favorable outcome? What could we have done differently to avoid these somewhat
disappointing conclusions?

1.3 deforming the string background

The first idea is the answer to the question
Q: What’s special about D free bosons?
A: Nothing. We were just studying them because of some strange idea from particle physics that
space is flat. Space can be curved. So just like we could coupling a particle to a background metric
and gauge field by the replacement

∫

√

Ẋ2 7→
∫

√

ẊµẊνGµν +

∫

AµẊµ

we can couple the Polyakov action to a background by the replacement

SNICE 7→ M2
s

∫

d2σ
√

γ∂aX
µ∂aX

ν
(

Gµν(X)γab + Bµν(X)ǫab
)

+ ....
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Here the Xs should be thought of as local coordinates on some manifold whose metric is G. This
is the action for a nonlinear sigma model (NLSM). It can be thought of as related to the previous
flat-space theory by making the fluctuations big – add in so many gravitons that they actually
change the background that the string propagates through.

While we’re at it, why can’t we just take any 2d QFT and couple it to worldsheet gravity and say
ha! there’s a string theory? In some ways, we can. There is one important dividing line, though.
If our 2d QFT is conformally invariant (a CFT), the modes of the 2d metric decouple, and the
story above goes through. If the worldsheet theory violates conformal invariance, sometimes sense
can be made of it by including the modes of the metric; this endeavor goes under the general name
Liouville.

Back to the NLSM, what is the condition that it is a CFT? The free theory, with flat-space target,
is clearly scale invariant (assign the scalars mass dimension zero). We can think of a big smooth
curved space as a perturbation around this fixed point. The metric and antisymmetric (AS) tensor
B are the couplings. The beta function for the metric is

βµν ∝ Rµν + ...

where Rµν is the ricci curvature of the metric Gµν , and ... are terms that are small when the space
is large compared to the string length ls. A Calabi-Yau manifold (CY) admits a metric which is
Ricci flat, and hence Calabi-Yau nonlinear sigma models are an interesting class to consider for
string compactification.

What do I mean by compactification? Consider the target space to be of the form R3,1×XD−4 where
X is some compact manifold, whose size we’ll characterize by some length scale L. If L is large
compared to ls, we can describe this using the effective field theory and expand the D-dimensional
fields in modes of the laplacian on X (this is called KK reduction).

In the regime where L ∼ ls, we need information from the worldsheet CFT. More generally, the
worldsheet CFT needn’t have any geometric interpretation at all; it could be some bunch of critical
potts models tensored together. In this sense the target space geometry, even in perturbative string
theory, is emergent. The fact that geometry is a derived quantity makes it possible for string theory
to do things like resolve singularities of GR and allow interesting topology-changing processes.

What picks out the value of L? This is the important question of ‘moduli stabilization’. The answer
lies in thinking of L (really, all the parameters of the geometry) as a 4d field, deriving an effective
potential, and finding its minima. This is a big, ongoing project.

1.4 superstrings

Compactification can fix the number of dimensions, but there’s still a tachyon, and there aren’t
any fermions in the target space spectrum of the bosonic string.

The second way to change the conclusion is to modify the worldsheet gauge group. If we replace 2d
gravity with 2d supergravity, the residual gauge symmetry (previously conformal symmetry) be-
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comes superconformal symmetry. We’ll need to include worldsheet fermions in a 2d supersymmetric
way. This is the RNS description of superstrings.

The connection between worldsheet fermions and spacetime ones is somewhat indirect (this trans-
lation between worldsheet things and spacetime things is a big part of our business here). Part of
the sum over 2d geometries includes a sum over spin structures, which goes under the name ’GSO
projection’. There are a few consistent choices for how to do this but in general, it does a bunch
of good things:
it removes the tachyon from the spectrum
it adds in spacetime fermions
it changes the critical dimension to 10
sometimes it implies target space supersymmetry.

There are 5 apparently different 10d supersymmetric superstrings called IIB, IIA, type I, heterotic
E8 × E8 and heterotic SO(32), which differ mainly in the ways of choosing the worldsheet gauge
group.

Even at the level of perturbation theory, some of these are related by 2d field theory dualities upon
compactification on a circle (T-duality).

Compactification of superstrings is ridiculously successful at reproducing or predicting ideas for
physics of the standard model and beyond: gauge theory, chiral matter, multiple generations,
supersymmetry, supersymmetry-breaking...

1.5 perspectives of other probes

D-branes exist. They are very important. They are objects with masses proportional to 1
gs

, which
means you don’t make them in perturbation theory around a vacuum without them (though they
are present in the 10d type I vacuum). However, their fluctuations have a beautiful desciption in
perturbation theory: just add in a new sector of open strings that end only on the place where you
want to put the D-brane. The modes of these strings allow the brane to wiggle. In general, they
comprise a Yang-Mills gauge theory – the fact that matrices are involved is simply because strings
have two ends.

1.6 Non-perturbative questions

So far, all of this was visible in perturbation theory and effective field theory. At this point I
have to confess that we don’t really know what the theory is at finite coupling. One thing we do
know, using supersymmetry, is that the 10d superstrings aren’t independent of each other, but are
all limits of some mysterious thing that we don’t understand. The relations between the string
theories are like g → 1/g dualities (S-duality) of field theory.
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1.7 the many roles of field theory in string theory.

Part of why string theory is not the fringe exercise that the newspaper portrays it to be is that
in studying string theory the basic tool is field theory, which is what most theoretical physicists
have been working on for almost a century. Field theory plays many roles in string theory, and it’s
important to keep them clearly in mind. These include:

1. The 2d field theory on the worldsheet is a 2d conformal field theory (CFT). Such theories
sometimes also manage to describe systems that exist in the real world.

2. The effective field theory of the actual full-blown with-gravity string theory is some (su-
per)gravity theory coupled to matter fields, which is an expansion in derivatives.

3. There are decoupling limits of string theory, where we consider energies much less than the
string scale, and the effects of oscillator modes go away. Notable examples are the gauge
theories living on piles of D-branes, which can be decoupled from gravity if we consider the
low-energy limit at weak coupling.

4. Something very interesting happens if we instead take the same limit at larger coupling,
where the gravitational back-reaction of the branes is important. In this regime they curve
the space into a black brane (like a black hole but extended in dimensions other than time).
Taking the same limit as we took at weak coupling now focuses in on the near-horizon region
of this object, and (in the case of D3-branes) the space there is AdS5×S5. The conclusion we
come to is that these two systems (the gauge theory on the D3-branes and the string theory
in AdS) are the same up to some variation of the coupling. The more general claim is that
string theories in some backgrounds (notably AdS5 × S5) are equivalent to field theories on
some lower dimensional space. This is called holographic duality. It’s not yet known how to
systematically construct such dual pairs, but a lot can be learned in both directions from the
ones we know.

2 What might it be good for?

Claim: String theory is the most mysterious obviously-consistent construct in theoretical physics.
It’s an alien artifact from the 20th century. What is it?? We don’t know.

What is it for? Here are some possible answers:

• GR isn’t UV complete. (not even N=8 supergravity, even if it’s finite.)
Something happens at high energy (perturbation theory is an expansion in E/Mplanck)
Something happens at singularities. (GR is provably wrong there!)

String theory is a quantum theory of gravity, with GR in low-energy limits. The fact that it
also includes particle physics means that it might be very useful for learning more about the
early universe, such as the period of inflation.

At short distances, string theory changes our notions of geometry (T-duality, topology change..)
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• Many questions aren’t askable in field theory.
Parameters and content of SM of particle physics demand explanation: why three generations?
why gauge theory? why this one?
Beyond particle physics, we can try to ask questions like:
are there extra dimensions? of what shape?
why are there 3+1 big dimensions?
can the topology of space change? (yes.)
was there something ‘before’ the big bang?
do black holes eat probability? (no.)
why are there light vectorlike particles?
...
This fact that string theory allows more questions to be asked makes it scientifically valuable.

• Via dualities like AdS/CFT, string theory can be used to study strongly-coupled field theories,
like QCD in the IR, condensed matter systems, who knows what else?
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