
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Problem Set 1
Classical Worldsheet Dynamics

Reading: GSW §2.1, Polchinski §1.2-1.4. Try §3.2-3.3.

Due: Friday, September 21, 2007 at 3 PM, in the 8.821 lockbox.

1. Weyl symmetry.1 are A (global) Weyl transformation acts on a field theory
coupled to gravity by

F (x) 7→ λ−W (F )F (x)

where F is a field, and W (F ) is a number called the Weyl weight of F . W is
normalized so that W (gµν) = 2.

(a) Find W (ϕ) so that

S =

∫

dDx
√

g
1

2
gµν∂µϕ∂νϕ

is Weyl invariant.

(b) Consider coordinate transformations of the form x 7→ x′ = λx, which can
be called Einstein-scale transformations. How do ϕ and gµν transform?

(c) Write down the transformation of ϕ and gµν under simultaneous Weyl
and Einstein-scale transformations. How does the result for ϕ relate to the
engineering dimension you would assign ϕ in order to make S dimensionless?

2. Local Weyl Invariance. Consider a gravity plus matter system in D dimen-
sions

S = Sgrav[gµν ] + Smatter [F, gµν ]

where Smatter is invariant under the local Weyl transformation

F (x) 7→ λ(x)−W [F ]F (x), gµν(x) 7→ λ−2(x)gµν(x).

1Problems 1-4 are due to Marty Halpern.
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Using the equations of motion, show that the matter stress tensor

T µν = − 2√
g

δSmatter

δgµν

is traceless:
T µνgµν = 0.

3. Symmetries of the Polyakov action. Recall the Polyakov action

SP = − 1

4πα′

∫

d2σ
√
−γγab∂aX

µ∂bXµ.

Think of this as the action for a system of matter (X) coupled to 2d gravity
(γab).

(a) Show that the Polyakov action is locally Weyl-invariant.

(b) Obtain an expression for the stress tensor

Tab ≡ − 2√
γ

δSP

δγab

and check that it is traceless. [You may want to use the relation

δ(det A) = det A tr (A−1δA),

where A is any nonsingular matrix, and δA is any small deformation.]

(c) Use the equation of motion for γab to show that when evaluated on a solution

SP [γ|EOM , X] = SNambu−Goto[X].

4. Virasoro algebra (no central extension yet). Consider the classical me-
chanics of D two-dimensional free bosons Xµ, which enjoy the canonical Poisson
bracket

{Xµ(σ), P µ(σ′)} = ηµνδ(σ − σ′)

with their canonical momenta P µ. Show that the objects

T±± ≡ ±πα′

2
W 2

±, W µ
± ≡ P µ ± ∂σX

µ

2πα′

satisfy two commuting copies of the Virasoro algebra

{T±±(σ), T±±(σ′} = (T±±(σ) + T±±(σ′))∂σδ(σ − σ′)
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{T±±(σ), T∓∓(σ′)} = 0.

You may use the identity

f(σ)f(σ′)∂σδ(σ − σ′) =
1

2
(f 2(σ) + f 2(σ′))∂σδ(σ − σ′), ∀f.

[This problem may be an opportunity to apply the Tedious Problem Rule
discussed in class.]

5. Spinning strings in AdS. [This problem might be hard.2] In this problem
we are going to think about the behavior of a string propagating in 5d anti
de Sitter space (AdS). Specifically, we are going to study and use some of its
conserved charges. When these conserved quantities are large, they can be
compared to their counterparts in a dual 4d gauge theory.

(a) Write down the Nambu-Goto action for a bosonic string propagating in
AdS5, whose metric (in so-called global coordinates) is

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
3) ≡ GijdX idXj (1)

where dΩ2
3 denotes the line element on the unit three-sphere,

dΩ2
3 = dθ2

1 + sin2 θ1(dθ2
2 + sin2 θ2dφ2).

(b) The AdS background has many isometries. We will focus on two: shifts of t
(the energy) and shifts of φ (the spin). These isometries of the target space are
symmetries of the NLSM, and therefore lead to conserved charges. Using the
Noether method, write an expression for the conserved charge S which follows
from the symmetry φ → φ + ǫ, with ǫ a constant. Write an expression for
the conserved charge E which follows from the symmetry t → t + δ, with δ a
constant.

We’re going to consider a spinning folded string, which spins as a rigid rod
around its center, and lies on an equator of the S3 in (1), θ1 = θ2 = π/2. The
center of the string is at the ‘center’ of AdS, ρ = 0. Go to a static gauge t = τ ,
with ρ some function of σ. Consider an ansatz for the azimuthal coordinate

φ = ωt;

2It is taken from a recent paper. For privacy’s sake, let’s call the authors Steve G., Igor K, and

Alexandre P. No, that’s too obvious. Uhh... let’s say S. Gubser, I. Klebanov and A. Polyakov.
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this describes a string spinning around the spatial sphere.

(c) Show that with these specifications the Nambu-Goto Lagrangian becomes

L = −4
R2

2πα′

∫ ρ0

0

dρ

√

cosh2 ρ − (φ̇)2 sinh2 ρ,

where coth2 ρ0 = ω2, and the factor of 4 is because there are four segments of
the string stretching from 0 to ρ0.

(d) Show that the energy and spin of this configuration are

E = 4

√
λ

2π

∫ ρ0

0

dρ
cosh2 ρ

√

cosh2 ρ − ω2 sinh2 ρ

S = 4

√
λ

2π

∫ ρ0

0

dρ
ω sinh2 ρ

√

cosh2 ρ − ω2 sinh2 ρ

where

λ =
R4

α′2
.

(e) Next we’re going to reproduce this solution from the Polyakov action, in
conformal gauge:

SP =
1

4πα′

∫

dτdσGij∂aX
i∂aXj.

In this description, a solution must also satisfy the equations of motion follow-
ing from varying the worldsheet metric, namely the Virasoro constraints:

0 = T++ = ∂+X i∂+XjGij

0 = T−− = ∂−X i∂−XjGij

Show that inserting
t = eτ, φ = eωτ, ρ = ρ(σ)

into the Virasoro constraints gives

(ρ′)2 = e2(cosh2 ρ − ω2 sinh2 ρ).

(Here e is a bit of slop which can be adjusted to make sure period of σ is 2π.)
This leads to an expression for dσ

dρ
.

4



Show that the (target-space) energy and spin are

E =
R2

2πα′
e

∫ 2π

0

dσ cosh2 ρ

S =
R2

2πα′
eω

∫ 2π

0

dσ sinh2 ρ.

Use your expression for dσ
dρ

to show that this reproduces the answers found
using the Nambu-Goto action.

(f) [super-bonus challenge] Expand the integrals for E and S at large spin
(ω = 1 + 2η, η ≪ 1), and show that in that regime

E − S ∼
√

λ ln S.

The fact that this expression is reminiscent of logarithmic scaling violations in
field theory is not a coincidence; the coefficient in front of the log is called the
’cusp anomalous dimension.’

Some other problems you might consider doing are

1. Polchinski Problem 1.2. Use the Virasoro constraints to show that the
endpoints of an open string (with Neumann boundary conditions) move at the
speed of light.

2. Polchinski Problem 1.1.
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