
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Problem Set 2
Attack of the free bosons from two dimensions

Reading: Polchinski §1.2-4, GSW §2.2-3. For torus compactification: Uranga,
lecture 3, try Polchinski §8.1-3. For high-energy density of states, GSW §2.3.5, and

Polchinski v. 1 pp. 321-322.

Due: Tuesday, October 2, 2007 before 11:00 AM in the lockbox. Be sure to write
your name on your pset.

1. Some suffering might be good for you.

[Tedious problem rule opportunity.] In this problem, we’ll derive the Virasoro
algebra (through its realization on the Hilbert space of D free bosons) by brute
force. Define the modes of the stress tensor to be normal-ordered

Ln =
1

2

∑

m∈ZZ

: α
µ
m−nαν

n : ηµν .

(a) Show that
[αµ

m, Ln] = mα
µ
n+m.

(b) Show that

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm−n.

where c = D = ηµνη
µν .

Helpful facts:
• [A, BC] = [A, B]C + B[AC]

for any three operators A, B, C.

•
n

∑

q=1

q2 =
n(n + 1)(2n + 1)

6
.

•
n

∑

q=1

q =
n(n + 1)

2
.
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Note: If you insist, you could instead find the central charge using the method
described in GSW §2.2.2 (and made into an exercise in Becker2-Schwarz prob-
lems 2.13-2.15, p. 57).

2. Virasoro operators really do generate conformal transformations.

Recall that fixing conformal gauge in the Polyakov theory leaves a residual
gauge invariance: reparametrizations of the form

σ± 7→ σ̃±(σ±)

change the metric in a way that can be compensated by a Weyl gauge trans-
formation, preserving the form of the metric. Such transformations are called
conformal transformations. The infinitesimal form of such a transformation is

σ̃± − σ± ≡ δσ± = ξ±(σ±).

This is two functions worth of transformations (an infinite-dimensional group),
a useful basis for which is Fourier modes:

δǫ±m
σ± = ǫ±meimσ±

.

Under this transformation, a scalar on the worldsheet transforms as X(σ+, σ−) 7→
X(σ̃+, σ̃−) = X + δǫX with

(⋆) δǫX =
∑

m,±
ǫ±meimσ±

∂±X.

When quantizing the string, after some circuitous logical meanderings, we dis-
covered that we should impose

(Lm − δma)|phys〉 = 0 = (L̃m − δma)|phys〉, m > 0

on physical states. Using the canonical commutation relations, show that the
operators Lm, L̃m indeed generate the transformations (⋆) by commutators,
i.e.1

δǫX = i[ǫ+
mLm + ǫ−mL̃m, X].

Note: If you prefer, do this problem with a euclidean worldsheet, using com-
plex coordinates on the plane (i.e. replace eiσ+

with z and eiσ−

with z̄ ). Only
the notation is different.

1Note that I have forgotten the i in δO = i[Q,O] a number of times in lecture. It had better be
there so that the both hand side can be hermitian when O is.
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3. A simple 2d GR problem.

(a) Find the Christoffel symbols Γk
ij (i, j, k = z, z̄) for the conformal gauge

metric
ds2 = e2ω(z,z̄)dzdz̄.

(b) Show that the covariant expression for the reparametrization FP ghost
action

Sgh =
1

2π

∫

d2σ
√

γbab∇acb

(here ∇ is the metric-compatible covariant derivative) reduces in conformal
gauge to

Sgh =
1

2π

∫

d2z (bzz∂z̄c
z + bz̄z̄∂zc

z̄) .

[note that
√

γ ≡
√
− det γ by definition]

(c) [bonus] Find the Ricci scalar for the conformal gauge metric.

4. Kaluza-Klein decomposition.

(a) Find the (D − 1)-dimensional spectrum of fields (i.e. their masses) that
arises by compactifying a single free massive scalar field φ on a circle of radius
R, governed by the action

SD[φ] = −
∫

dDx
(

∂Mφ∂Mφ + m2φ2
)

(1)

where the indices M, N = 0..D − 1; we’ll reserve µ, ν = 0..D − 2 for the
noncompact directions. (Note: No gravity yet.) [Hint: expand the field in a
basis of single-valued functions on the circle on which the translation operator
eip̂y (y ≡ xD−1) acts diagonally.]

(b) In lecture 4 I claimed that compactifying D-dimensional GR on a circle
produced a D − 1-dimensional graviton gµν , a D − 1-dimensional gauge field
Aµ, and a scalar field σ (plus all of their massive KK harmonics).

Demonstrate that this is the case (to your own satisfaction) starting from the
ansatz for the D-dimensional metric

ds2 = GMNdxMdxN = e2σ(dy + Aµdxµ)2 + gµνdxµdxν .

where y ≡ y + 2πR is the coord on the circle. (e.g. you might want to show
that the D-dimensional Einstein-Hilbert term

1

8πG
(D)
N

∫

dDx
√

GRD
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produces kinetic terms for g, A, σ.) [Hint: use the gauge invariance Aµ →
Aµ +∂µǫy(x) (which is a subgroup of the D-dimensional coordinate invariance)
to constrain the possible terms in the Lagrangian.]

I claimed further that the charge to which the gauge field coupled was the
KK momentum (i.e. the momentum along the circle). As a test of this claim,
couple the scalar in part (a) to D-dimensional gravity – i.e. replace (1) with
the fancy covariant expression

SD[φ, G] = −
∫

dDx
√

G
(

∇Mφ∇NφGMN + m2φ2
)

.

– and show that this expression includes a minimal coupling between A and any
mode of φ which carries momentum along the circle, with strength proportional
to the momentum.

(c) What is the D−1-dimensional Newton constant in terms of the D-dimensional

one, G
(D)
N ? What is the gauge coupling for the KK gauge field (i.e. the unit

of electric charge)? Do the engineering dimensions of all these quantities make
sense?

(d) [Bonus Q] What do you get if you compactify pure gravity on a space with
isometry group G?

5. No Goldstone bosons in two dimensions.

[This is really more a diatribe than a problem.] (a) Show that the euclidean
2d massless scalar Green function G2

∇2G2(z, z
′) = −2πδ2(z − z′)

(z = σE
1 + iσE

2 ) is given by

G2(z, z
′) = − ln |z − z′|,

for example by Fourier transform.

(b) The long-distance behavior of G2 has important implications for the physics
of massless scalars in two dimensions. Thinking of G2 as the two point function
of a massless scalar

G2(z, z
′) = 〈X(z)X(z′)〉,

let’s ask the following question:
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There is no potential energy for the field X in the Polyakov Lagrangian. A
four-dimensional physicist Someone used to physics in (3+1)-dimensions might
think that this means that there is a vacuum for every value of X, i.e. that
X is a modulus. Let’s try to fix the expectation value of the scalar 〈X〉 =
x and see what happens. Perturb the (conjectured) vacuum |x〉 a little bit
at the worldsheet position z by inserting the operator X there. To measure
what happens, we insert the operator X at z′. The correlator G2 can thus be
interpreted as a measurement of how the effects of our perturbation fall off with
distance. What happens? Contrast this with the behavior you would see for a
scalar field with a flat potential in three or more (really 2 + ǫ) dimensions. It
may be useful to remind yourself about the (even more dramatically infrared-
problematic) case of (0+1) dimensions, i.e. QM.

Note, by the way, that the Goldstone-ness of the massless bosons (i.e. whether
they are massless because of a symmetry) is not crucial. In non-supersymmetric
sigma models, one expects massless bosons whose mass is not protected by a
symmetry to be lifted quantumly, but in supersymmetric theories, this need not
be the case. So this story is also important for supersymmetric NLSMs where
the target space has no continuous isometries, as is the case for Calabi-Yau
manifolds.

This result is called the Coleman-Mermin-Wagner theorem (sometimes Hohen-
berg, too). For help, read S. Coleman, “There are no Goldstone bosons in
two-dimensions.,” Commun.Math.Phys. 31:259-264 (1973).

6. The guts of the Veneziano amplitude. Consider a collection of D two-
dimensional free bosons Xµ governed by the action

S = − 1

4π

∫

d2σ∂aXµ∂aXµ.

(a) Rotate eiS to Euclidean space (d2σ = −i(d2σ)E) and compute the Euclidean
generating functional

Z[J ] =
〈

e
R

(d2σ)EJµXµ

〉

≡ Z−1

∫

[dX]eiSe
R

(d2σ)EJµXµ

(where Z ≡ Z[J = 0], but please don’t worry too much about the normalization
of the path integral.) [Hint: Use Wick’s theorem or do the Gaussian path
integral. Use the Green function from the previous problem.]
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(b) Show that

〈

N
∏

i=1

: e−i
√

2α′ki·X(σ(i)) :

〉

=
N
∏

i,j=1

|zi − zj |α
′ki·kj

where σ(i) label points in Euclidean space, zi = σ
(i)
1 + iσ

(i)
2 , α′ is the Regge

slope, and k
µ
i are a set of arbitrary D-vectors in the target space.

[Note 1: There is an important lie here. To unmask the lie, consider the
consequences of the global symmetry Xµ → Xµ+constµ, particularly in light of
the previous problem, and its implications for the invertibility of the laplacian.]

[Note 2: In the last two problems I’ve rescaled Xusual = Xhere√
α′

relative to our
usual normalization of the free bosons – these X variables are dimensionless in
the target space.]
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