
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Problem Set 3
2d CFT

Due: Thursday, October 11, 2007 at 11:00 AM, in the 8.821 lockbox.
Reading: Ginsparg CFT notes §1,2,3,6. Try §4. Polchsinski, Chapter 2. GSW,
Chapter 3 (note that the CFT is hidden in §3.2, entitled ’BRST quantization’).

1. Warmup. Compute the scaling dimension of the operator Ok ≡: eikX : in the
free boson theory whose stress tensor is T (z) = − 1

α′
: ∂X∂X(z) :, using the

TOk OPE.

2. Linear dilaton CFT.

The linear dilaton theory is a 2d CFT made from a free boson in the presence of
a ’background charge.’ This means that the boson X has some funny coupling
to the worldsheet gravity, which can be described by a linear dilaton term
in the action SΦ =

∫

d2σΦ(X)R(2), Φ(X) = QX, Q is a constant. On a
flat worldsheet, the quantization of X proceeds as before. In that case, the
only difference from the ordinary free boson is that the stress tensor (which is
sensitive to how the theory is coupled to gravity) has the form

TQ = − 1

α′ : ∂X∂X : +V ∂2X

(where V ∼ Q).

[Optional: relate V to Q.]

(a) Verify that TQ has the right OPE with itself to be the stress tensor for a
CFT. Compute the Virasoro central charge for the linear dilaton theory.

(b) Compute the scaling dimension of the operator : eikX : in the linear dilaton
theory.

Extra stimulation: Can you interpret the result of (b) in terms of a target space
effective action?

3. The stress tensor is not a conformal primary if c 6= 0. 1

1I got this problem from Robbert Dijkgraaf.
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(a) For any 2d CFT, use the general form of the TT OPE to show that the
transformation of T under an infinitesimal conformal transformation z 7→ z +
ξ(z) is

−δξT (w) = (ξ∂ + 2∂ξ)T (w) +
c

12
∂3ξ. (1)

(b) Consider the finite conformal transformation z 7→ f(z). Show that (1) is
the infinitesimal version of the transformation law

Tzz(z) = (∂f)2Tff (f(z)) +
c

12
{f, z}

where

{f, z} ≡ ∂f∂3f − 3
2
(∂2f)2

(∂f)2

is called a Schwarzian derivative.

[Optional: verify that this extra term does the right thing when composing two
maps z → f(z) → g(f(z)).]

(c) Given that the conformal map from the cylinder to the plane is z = e−iw,
show that (b) means that

(

Tcyl(w) − c

24

)

(dw)2 = Tplane(z)(dz)2.

Use this relation to show that the Hamiltonian on the cylinder

H =

∫

dσ

2π
Tττ

is

H = L0 + L̃0 −
c + c̄

24
.

Comment: After all this complication, the result has a very simple physical
interpretation: when putting a CFT on a cylinder, the scale invariance is spon-
taneously broken by the fact that the cylinder has a radius, i.e. the cylinder
introduces a (worldsheet) length scale into the problem. The term in the en-
ergy extensive in the radius of the cylinder (and proportional to c) is actually
experimentally observable.

4. Constraints from Unitarity. Show that in a unitary CFT, c > 0, and h ≥ 0
for all primaries. Hint: consider 〈φ|[Ln, L−n]|φ〉.
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5. SU(2)1 current algebra from a circle.

Consider the closed bosonic string compactified on a circle of radius R =
√

α′.
In lecture 4 all kinds of ridiculous claims were made about this theory. Here we
will study the CFT describing the strings on this circle and verify that there is
in fact an SU(2)L × SU(2)R gauge symmetry involving winding modes. We’ll
focus on the holomorphic (L) part; the antiholomorphic part will be identical.

Label the circle coordinate X25 ≡ X ∼ X + 2πR. Define

J±(z) ≡: e±2iX(z)/
√

α′

:, J3 ≡ i

√

2

α′∂X(z).

(a) Show that J3, J± are single-valued at the ’self-dual radius’ R =
√

α′.

(b) At the self-dual radius, do J±, J3 have the right conformal dimension to
create physical string states which are massless?

(c) Defining J± ≡ 1√
2
(J1±iJ2) show that the operator product algebra of these

currents is

Ja(z)J b(0) ∼ δab

z2
+ i

√
2ǫabc J

c(0)

z
+ ...

(d) [Bonus tedium] Defining modes as usual for a dimension 1 operator,

Ja(z) =
∑

n∈ZZ

Ja
nz−n−1

show that
[Ja

m, J b
n] = i

√
2ǫabcJc

m+n + mkδabδm+n

with k = 1, which is an algebra called Affine SU(2) at level k = 1. Note that
the m = 0 modes satisfy the ordinary SU(2) lie algebra.

(e) Think about how the results of (a)-(d) verify the claim that the spectrum
of the compactified theory at this special radius really has non-abelian gauge
symmetry, with the extra gauge bosons made from wound strings. Specifically,
construct the physical vertex operators for the three SU(2)L gauge bosons by
tensoring Ja with some right-moving operator (remember to level-match) and
some factor that allows the resulting state to have (null) momentum in the
noncompact dimensions. Remember that an operator eikLXLeikRXR creates a
string mode with nonzero winding if kL 6= kR.
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