
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Problem Set 4
String scattering, open strings, supersymmetry warmup.

Reading: Polchinski, Chapter 6. Please ask about supersymmetry refs.

Due: Thursday, October 25, 2007 at 11:00 AM, in lecture or in the box.

1. Another tree amplitude (Polchinski 6.11).

(a) For what values of ζµ,ν and kµ does the vertex operator

Oζ(k) = cc̃g′cζµν(k) : ∂Xµ∂̄Xν eik·X :

create a physical state of the bosonic string ?

(b) Compute the three-point scattering amplitude for a massless closed string
and two closed-string tachyons at tree level.

(c) Factorize the tachyon four-point amplitude on the massless pole (in say
the s-channel), and use unitarity to relate the massless coupling g′c to gc, the
coupling for the tachyon.

2. High-energy scattering in string theory.1

Consider the tree-level scattering amplitude of N bosonic string states, with
momenta kµ

i :

A(n)({k1, ..., kn}) =

∫ n
∏

i=4

d2zi

〈

n
∏

i=1

Vki
(zi, z̄i)

〉

S2

.

In this problem we will study the limit of hard scattering (also called fixed-angle
scattering), where we scale up all the momenta uniformly,

kµ
i 7→ αkµ

i , α→ ∞;

in terms of the Lorentz-invariant Mandelstam variables, we are taking the limit
sij → ∞, sij/skl fixed. It was claimed in class that the 4-point function behaves

1This discussion follows the papers of Gross and Mende.
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in this limit like e−sα′f(θ) where θ is the scattering angle. In this limit, k2 ≫ m2

(if both aren’t zero) and we can ignore the parts of the vertex operators other
than eik·X .

(a) Notice that the integral over X is always gaussian, hence the action of the
saddle point solution gives the exact answer. Find the saddle-point configura-
tion of X(z) and evaluate the on-shell action.

(b) In the hard-scattering limit, the integral over the positions of the n − 3
unfixed vertex operators is also well-described by a saddle-point approximation.
Convince yourself that this is true; i.e. that the saddle point is well-peaked.

(c) For the four-point function, find the saddle-point for the z4 integral and
evaluate the action on the saddle. Compare to the claimed behavior of the
exact tree-level answer.

3. Open string boundary conditions. Polchinski Problems 1.6 and 1.7.

4. T-duality: not just for the free theory. Polchinski Problem 8.3.

The following problems are intended to get everyone up to speed with supersym-
metry and its consequences. They are more optional than the other ones.

1. Supersymmetric point particle.

Consider the action for a spinning particle

S =

∫

dτ

(

− ẋ
2

2e
+ e−1iẋµψµχ− iψµψ̇µ

)

.

The ψµs are real grassmann variables, fermionic analogs of xµ, which satisfy

ψµψν = −ψνψµ.

(a) Show that this action is reparametrization invariant, i.e.

δxµ = ξẋµ, δψµ = ξψ̇µ

δe = ∂τ (ξe), δχ = ∂τ (ξχ)

is a symmetry of S.

(b) Show that the (local) supersymmetry transformation

δxµ = iψµǫ, δe = iχǫ
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δχ = ǫ̇, δψµ =
1

2e
(ẋµ + iχψµ)ǫ.

with ǫ a grassmann variable, is a symmetry of S.

(c) Consider the gauge e = 1, χ = 0. What is the equation of motion for χ?
What familiar equation for ψ do we get?

2. Strings in flat space with worldsheet supersymmetry.

Consider the action for D free bosons and D free fermions in two dimensions:

S = − 1

2π

∫

d2σ
(

∂aX
µ∂bXµ − iψ̄µρa∂aψµ

)

.

The spacetime µ = 0..D − 1 indices are contracted with ηµν . Here ψµ are 2d
two-component majorana spinors, and ρa are 2d ’gamma’ matrices, i.e., they
participate in a 2d Clifford algebra {ρa, ρb} = −2ηab (we’ll work on a Lorentzian
worldsheet for this problem), and ψ̄ ≡ ψ†ρ0. Pick a basis for the 2d ’gamma’
matrices of the form

ρ0 =

(

0 −i
i 0

)

, ρ1 =

(

0 i
i 0

)

. (1)

(a) Show that the fermion part of the action above leads to the massless Dirac
equation for the worldsheet fermions ψ. Show that with the chosen basis of
gamma matrices ρα, the Dirac equation implies that ψ± is a function of σ±

only (where I’m letting the indices on ρa
αβ run over α, β = ±).

Next we want to show that the (global) supersymmetry transformation

δXµ = ǭψµ

δψµ = −iρa∂aX
µǫ

is a symmetry of the action S.

(b) A useful first step is to show that for Majorana spinors

χ̄ψ = ψ̄χ.

(c) Show that the action S is supersymmetric.

(d) What is the conserved Noether current Gaα associated to the supersymme-
try?
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(e) [Optional] Show that the algebra enjoyed by the Noether supercharges
Qα ≡

∫

dσG0α under Poisson brackets (or canonical (anti)-commutators) is
of the form

{Qα, Qβ} = −2iρa
αβPa (2),

where Pa is the momentum.

Or equivalently, show that the commutator of two supersymmetry transforma-
tions (acting on any field) acts as a spacetime translation:

[δǫ1, δǫ2 ]O = Aa∂aO

where A is a constant writeable in terms of ǫ1,2.

(f) Show that the algebra (2) above implies that a state is a supersymmetry
singlet (Q|ψ〉 = 0) if and only if it is a ground state of H .

(g) (1,1) superspace. Show that the action above can be rewritten as
∫

d2z

∫

dθ+dθ− D+X ·D−X

where θ± are real grassmann coordinates on 2d,N = (1, 1) superspace (i.e.
there is one real right-moving supercharge and one real left-moving super-
charge), and the (1,1) superfield is

X(z, z̄, θ+, θ−) ≡ X + θ−ψ− + θ+ψ+ + θ+θ−F+−,

and

D+ =
∂

∂θ+
+ θ+ ∂

∂σ−
, D− =

∂

∂θ−
+ θ−

∂

∂σ+

are (1,1) superspace covariant derivatives. Please note that the ± indices on
the θs are 2d spin, i.e. sign of charge under the 2d SO(2) ∼ U(1) of rotations;
so for example the object D± has spin ±1/2. The conservation of this quantity
is a useful check on the calculation.

3. N = (0, 2) and N = (2, 2) supersymmetry.

In the previous problem we studied a system with (1, 1) supersymmetry. Many
interesting theories have extended supersymmetry in two dimensions. A par-
ticularly interesting and familiar case is 2d,N = (2, 2) supersymmetry, which
arises by dimensional reduction from (the conceivably realistic) 4d,N = 1 su-
persymmetry. 2

2For this problem, we return to a euclidean worldsheet.
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(a) Consider the action
∫

d2z

∫

d2θ D̄XDX

where now θ is a complex grassmann variable, d2θ = dθdθ̄,

X(z, z̄, θ, θ̄) ≡ X + θψ + θ̄ψ̄ + θθ̄F

are 2d N = 2 superfields and

D =
∂

∂θ
+ θ∂z, D̄ =

∂

∂θ̄
+ θ̄∂̄z̄

are N = 2 superspace covariant derivatives. What does this look like in com-
ponents?

(b) Now we will discuss N = (2, 2) supersymmetry. This means that we
have a complex grassmann superspace coordinate of both chiralities α = ±1

2
:

θ+, θ̄+, θ−, θ̄−. And therefore we have four superspace derivatives:

Dα =
∂

∂θα
+ iρa

αβ θ̄
β∂a, D̄α = − ∂

∂θ̄α
− iρa

αβθ
β∂a.

A chiral superfield is one which is killed by half the supercharges:

D̄±Φ = 0.

Such a field can be expanded as (α = ±)

Φ(x, θ, θ̄) = φ(y) +
√

2θαψ
α(y) + θαθαF

where
ya = xa + iθασa

αβ θ̄
β

and the ± indices are raised and lowered with ǫαβ .

Show that the action

Scanonical =

∫

d2z

∫

d2θ+d
2θ− Φ̄Φ .

gives a canonical kinetic term for X and its superpartner, but no term with
derivatives of the auxiliary field F . 3

3It will be useful to note that the complex conjugate field Φ̄ is an antichiral multiplet satisfying
D̄αΦ̄ = 0, and can be expanded as

Φ̄ = φ̄(ȳ) +
√

2θ̄αψ̄
α(ȳ) + θ̄αθ̄

αF

where ȳa = xa − iθασa
αβ θ̄

β .
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A more general kinetic term comes from a Kähler potential K,

SK

∫

d2z

∫

d2θ+d
2θ− K(Φ̄,Φ) ,

where before we made the special choice K = Φ̄Φ. What are the bosonic terms
coming from this superspace integral?

Now consider a superpotential term, which can be written as an integral over
only half of the superspace:

SW =

∫

d2z

∫

dθ+dθ−W (Φ) + h.c..

Show that this term is supersymmetric if W depends only on chiral superfields
in a holomorphic way, ∂

∂Φ̄
W = 0.

With the action
S = SK + SW

integrate out the auxiliary fields F, F̄ to find the form of the bosonic potential
for φ. 4 Describe the supersymmetric ground states of this system.

4. Supersymmetric ghosts. Consider a (chiral) N = 2 multiplet of ghosts:

B = β + θb, C = c+ θγ ;

here θ is a coordinate on 2d N = 2 superspace, b, c are ordinary Grassmann bc
ghosts, with scaling weight λ, 1 − λ. β, γ are commuting ghosts with weights
λ− 1

2
and 1

2
− λ respectively.

Write the action

SBC =

∫

d2z

∫

d2θ BD̄C

in components; here D̄ = ∂
∂θ̄

+ θ̄∂̄z̄ is the same superspace covariant derivative
from before.

Find an expression for the supercurrent in this theory.

4It is often useful to label a superfield by its lowest component.
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