MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
String Theory (8.821) — Prof. J. McGreevy — Fall 2007

Problem Set 4
String scattering, open strings, supersymmetry warmup.
Reading: Polchinski, Chapter 6. Please ask about supersymmetry refs.

Due: Thursday, October 25, 2007 at 11:00 AM, in lecture or in the box.

1. Another tree amplitude (Polchinski 6.11).

(a) For what values of (,, and k* does the vertex operator
Oc(k) = cég.Cp (k) : OXHOXY e* .

create a physical state of the bosonic string ?

(b) Compute the three-point scattering amplitude for a massless closed string
and two closed-string tachyons at tree level.

(c) Factorize the tachyon four-point amplitude on the massless pole (in say
the s-channel), and use unitarity to relate the massless coupling g. to g., the
coupling for the tachyon.

2. High-energy scattering in string theory.!

Consider the tree-level scattering amplitude of N bosonic string states, with
momenta k'

A (s B ) — /Hdzzi <H sz(zz,zz)>

In this problem we will study the limit of hard scattering (also called fixed-angle
scattering), where we scale up all the momenta uniformly,

S2

k' — akl',  a— oo;

in terms of the Lorentz-invariant Mandelstam variables, we are taking the limit
Sij — 00, Si;/ sk fixed. It was claimed in class that the 4-point function behaves

!This discussion follows the papers of Gross and Mende.
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in this limit like e=5*/(®) where 6 is the scattering angle. In this limit, k2 > m?

(if both aren’t zero) and we can ignore the parts of the vertex operators other
than e?*X.

(a) Notice that the integral over X is always gaussian, hence the action of the
saddle point solution gives the exact answer. Find the saddle-point configura-
tion of X (z) and evaluate the on-shell action.

(b) In the hard-scattering limit, the integral over the positions of the n — 3
unfixed vertex operators is also well-described by a saddle-point approximation.
Convince yourself that this is true; i.e. that the saddle point is well-peaked.

(c) For the four-point function, find the saddle-point for the z, integral and
evaluate the action on the saddle. Compare to the claimed behavior of the
exact tree-level answer.

3. Open string boundary conditions. Polchinski Problems 1.6 and 1.7.

4. T-duality: not just for the free theory. Polchinski Problem 8.3.

The following problems are intended to get everyone up to speed with supersym-
metry and its consequences. They are more optional than the other ones.

1. Supersymmetric point particle.

Consider the action for a spinning particle
2 -
S = /dT <—% + e it x — izﬁ“qﬁu) :
The *s are real grassmann variables, fermionic analogs of x*, which satisfy
Y = gy
(a) Show that this action is reparametrization invariant, i.e.
Sat = Ei, Bt = €

de = 0:(Ee), Ox = B-(€x)
is a symmetry of S.

(b) Show that the (local) supersymmetry transformation

oxt =iate, e =1yxe



1
ox =€, ot = 2—(:17“ + ixy*t)e.

e
with € a grassmann variable, is a symmetry of S.
(c) Consider the gauge e = 1, x = 0. What is the equation of motion for y?
What familiar equation for ¢ do we get?
. Strings in flat space with worldsheet supersymmetry.
Consider the action for D free bosons and D free fermions in two dimensions:

1 Cha
§=— o (0. X" 0 X, — 1" p"0athy) -

The spacetime 4 = 0..D — 1 indices are contracted with 7,,. Here ¢* are 2d
two-component majorana spinors, and p® are 2d 'gamma’ matrices, i.e., they
participate in a 2d Clifford algebra {p®, p°} = —21n (we’ll work on a Lorentzian
worldsheet for this problem), and 1) = p°. Pick a basis for the 2d 'gamma’
matrices of the form

s (0 7). (i) o

(a) Show that the fermion part of the action above leads to the massless Dirac
equation for the worldsheet fermions . Show that with the chosen basis of
gamma matrices p®, the Dirac equation implies that 14 is a function of o
only (where I'm letting the indices on pf; run over a, 3 = +).

Next we want to show that the (global) supersymmetry transformation
SXH — et
oYt = —ip®0, X" e

is a symmetry of the action S.

(b) A useful first step is to show that for Majorana spinors
X = ¥x.

(c) Show that the action S is supersymmetric.

(d) What is the conserved Noether current G, associated to the supersymme-
try?



(e) [Optional] Show that the algebra enjoyed by the Noether supercharges
Qo = [doGy, under Poisson brackets (or canonical (anti)-commutators) is
of the form

{Qméﬁ} = _2ipgﬁpa (2)7
where P, is the momentum.

Or equivalently, show that the commutator of two supersymmetry transforma-
tions (acting on any field) acts as a spacetime translation:

[0c,, 0c,] O = A0, O

where A is a constant writeable in terms of € 5.

(f) Show that the algebra (2) above implies that a state is a supersymmetry
singlet (Q|¢) = 0) if and only if it is a ground state of H.

(g) (1,1) superspace. Show that the action above can be rewritten as
/ d*z / dotdo~ DX -D_X

where 6F are real grassmann coordinates on 2d, N' = (1,1) superspace (i.e.
there is one real right-moving supercharge and one real left-moving super-
charge), and the (1,1) superfield is

X(Z> 27 9+a 9_) = X + e_w— + 9+¢+ + 9+9—F+—a

and 9 9 9 9
Dy=—+4+0"—, D_=_——+0 —
T o0~ 7 o
are (1,1) superspace covariant derivatives. Please note that the + indices on
the 0s are 2d spin, i.e. sign of charge under the 2d SO(2) ~ U(1) of rotations;
so for example the object D has spin £1/2. The conservation of this quantity

is a useful check on the calculation.

3. N =(0,2) and N = (2,2) supersymmetry.

In the previous problem we studied a system with (1, 1) supersymmetry. Many
interesting theories have extended supersymmetry in two dimensions. A par-
ticularly interesting and familiar case is 2d, N = (2, 2) supersymmetry, which
arises by dimensional reduction from (the conceivably realistic) 4d, N' =1 su-
persymmetry. 2

2For this problem, we return to a euclidean worldsheet.
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(a) Consider the action

/ d’z / d’6 DXDX

where now 6 is a complezx grassmann variable, d*0 = dfd0,
X(2,2,0,0) = X 4+ 0 + 0 + 00F
are 2d N/ = 2 superfields and
0 _ 0 =
D = a5 2 D Y z
50 + 600 Y + 00

are N/ = 2 superspace covariant derivatives. What does this look like in com-
ponents?

(b) Now we will discuss N/ = (2,2) supersymmetry. This means that we
have a complex grassmann superspace coordinate of both chiralities o = ﬂ:%:
0,.,0,,0_,0_. And therefore we have four superspace derivatives:

_ - 0
+ipts0°0s, Do = ——r —ipl00,.

D _
06«

_ 92
“ 00~
A chiral superfield is one which is killed by half the supercharges:

D, =0.
Such a field can be expanded as (o = =)
®(x,0,0) = ¢(y) + V20,0 (y) + 00 F

where B

yr=x"+ zﬂaagﬁﬁﬁ
and the + indices are raised and lowered with ¢*°.
Show that the action

Scanonical :/dzz/d29+d20_ oD

gives a canonical kinetic term for X and its superpartner, but no term with
derivatives of the auziliary field F. 3

- 3ﬁIt will be useful to note that the complex conjugate field ® is an antichiral multiplet satisfying
D,® =0, and can be expanded as

D = G(F) + V20,0%(5) + 0,0°F

where y* = z% — i@o‘agﬁ@_ﬁ.



A more general kinetic term comes from a Kahler potential K,
Sk / d*z / d*0,.d*0_ K(®,®) |

where before we made the special choice K = ®®. What are the bosonic terms
coming from this superspace integral?

Now consider a superpotential term, which can be written as an integral over
only half of the superspace:

S = / 42z / 0., dO_W (®) + h.c..

Show that this term is supersymmetric if W depends only on chiral superfields
in a holomorphic way;, %W =0.

With the action
S =Sk + Sw

integrate out the auxiliary fields F, F' to find the form of the bosonic potential
for ¢. * Describe the supersymmetric ground states of this system.

4. Supersymmetric ghosts. Consider a (chiral) N/ = 2 multiplet of ghosts:
B=p+60b, C=c+0y ;

here 6 is a coordinate on 2d N = 2 superspace, b, ¢ are ordinary Grassmann bc
ghosts, with scaling weight A\, 1 — \. [, are commuting ghosts with weights
A— % and % — A respectively.

Write the action
Spc = /d2z/d29 BDC

in components; here D = a% + A0; is the same superspace covariant derivative
from before.

Find an expression for the supercurrent in this theory.

4Tt is often useful to label a superfield by its lowest component.



