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String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Problem Set 5
A little more on open strings, bosonization, superstring spectrum

Reading: Polchinski, Chapter 10.

Due: Thursday, November 8, 2007 at 11:00 AM in lecture.

1. The open string tachyon is in the adjoint rep of the Chan-Paton

gauge group.

Convince yourself that I wasn’t lying when I said that the pole in the Veneziano
amplitude (with no CP factors) at s = 0 cancels in the sum over orderings. Con-
vince yourself that this means that when CP factors are included the tachyon
is in the adjoint representation of the D-brane worldvolume gauge group.

2. Bosonization of a Dirac fermion = Fermionization of a non-chiral

boson.

(a) Consider the CFT associated with compactification on a single circle of
radius R, i.e. one periodic free boson X ≃ X + 2πR. Show that the partition
function on a torus of modular parameter q = e2πiτ is ( in α′ = 2 units)
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where the Dedekind eta function is
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Note that this function is invariant under T-duality:

ZR = Zα/R.

(b) Here we will study the special radius R = 1 =
√

α′/2 (or equivalently

R = 2 =
√

2α′, by T-duality). Show that at this special radius (which is
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different from the self-dual radius, R =
√

2 =
√

α′!), the partition function can
be written as
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(c) Show that this last form of Z is the partition function of a 2d Dirac fermion
(!). Note that ’Dirac fermion’ here means two left-moving MW fermions and
two right-moving MW fermions, and we are choosing the spin structures of
the right-moving and left-moving fermions in a correlated, non-chiral way –
the GSO operator is the (−1)F which counts the fermion number of all the
fermions at once, and we include only RR and NSNS sectors. This is called
the ’diagonal modular invariant’. Note that this is a different sum over spin
structures than the one in the system bosonized in Polchinski chapter 10 (and
this is why it can be modular invariant with fewer than eight fermions).

[Hint: (i) The three terms in Z1 arise from the three choices of spin structure
which give nonzero partition functions.

(ii) The sums in the squares are theta functions, specifically,
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which can be expressed as infinite products (instead of infinite sums), as de-
scribed on page 215 of Polchinski vol. I. Rewrite Z1(τ, τ̄) using the product
forms of the theta functions.]

3. Superstring worldsheet vacuum energy.

Show that
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where we can define the divergent sums by a regulator mass:
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Show that this reproduces the lightcone gauge vacuum energies for the NS and
R sectors.

Relatedly, you might want to do Polchinski problem 10.8.

4. bispinors.

Make yourself happy about the field content of the RR sectors of the type II
superstrings. In particular, if η± are chiral spinors,

(1 ∓ γ)η± = 0, {γ, γi} = 0, ∀i = 1..8,

show that
η̃+γi1...iqη+ = 0

if q is odd and
η̃+γi1...iqη− = 0

if q is even.
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