
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Solution Set 2
Attack of the free bosons from two dimensions

Reading: Polchinski §1.2-4, GSW §2.2-3. For torus compactification: Uranga,
lecture 3, try Polchinski §8.1-3. For high-energy density of states, GSW §2.3.5, and

Polchinski v. 1 pp. 321-322.

Due: Tuesday, October 2, 2007 before 11:00 AM in the lockbox. Be sure to write
your name on your pset.

1. Some suffering might be good for you.

[Tedious problem rule opportunity.] In this problem, we’ll derive the Virasoro
algebra (through its realization on the Hilbert space of D free bosons) by brute
force. Define the modes of the stress tensor to be normal-ordered

Ln =
1

2

∑

m∈ZZ

: αµ
m−nαν

n : ηµν .

(a) Show that
[αµ

m, Ln] = mαµ
n+m.

[αµ
m, Ln] ==

1

2

∑

p∈ZZ

[αm
mu, : αν

pα
ρ
n−p : ηνρ.]

The normal ordering symbol on the Ln can be removed at the possible cost of
a c-number addition; since αm commutes with c-numbers, we don’t care about
this here. Now we use Helpful Fact number (1) (which I guess should be called
the derivation property of the commutator) to show that

[αµ
m, Ln] =

1

2

∑

p∈ZZ

(

[αµ
m, αν

p ]α
ρ
n−pηνρ + αµ

p [αµ
m, αρ

n−p]ηνρ

)

=
1

2

∑

p

(δm+pα
µ
n−p + δm+n−pα

µ
p )m = mαµ

n+m.
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(b) Show that

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm−n.

where c = D = ηµνη
µν .

Helpful Facts:
(1) [A, BC] = [A, B]C + B[AC]

for any three operators A, B, C.

(2)
n
∑

q=1

q2 =
n(n + 1)(2n + 1)

6
.

(3)

n
∑

q=1

q =
n(n + 1)

2
.

Note: If you insist, you could instead find the central charge using the method
described in GSW §2.2.2 (and made into an exercise in Becker2-Schwarz prob-
lems 2.13-2.15, p. 57).

I will follow the brute force technique, since the other is explained
in GSW. First get write out the normal ordering explicitly:

[Lm, Ln] =
1

2

∑

p∈ZZ

[: αp · αm−p :, Ln] =
1

2

0
∑

p=−∞
[αp ·αm−p, Ln] +

∞
∑

p=1

[αm−p · αp, Ln].

Now we use Helpful Fact (1) again on each term, and the result of
part (a) to get

[Lm, Ln] =
1

2

0
∑

p=−∞
((m − p)αp · αm+n−p + pαn+p · αm−p)

+
1

2

∞
∑

p=1

((m − p)αm+n−p · αp + pαm−p · αn+p)

Note that in every term the mode numbers always add up to the same
number (m + n) – this is a consequence of translation invariance in σ
on the worldsheet, i.e. it’s worldsheet momentum conservation. Next

2



rename the summation variable in the second and fourth terms to
q = p + n:

[Lm, Ln] =
1

2

0
∑

p=−∞
(m − p)αp · αm+n−p +

1

2

n
∑

q=−∞
(q − n)αq · αm+n−q

+
1

2

∞
∑

p=1

(m − p)αm+n−p · αp +
1

2

∞
∑

q=n+1

(q − n)αm+n−q · αq

Assume n > 0 for a moment (n ≤ 0 is similar). Relabel the summation
variable in the first and third terms p = q. Then the first two terms
can be combined using the identity m − p + p − n = m − n, except for
the q = 1...n entries in the second term. A similar thing happens with
the third and fourth, leaving

[Lm, Ln] ==
1

2

0
∑

q=−∞
(m − n)αq · αm+n−q +

1

2

n
∑

q=1

(q − n)αq · αm+n−q

+
1

2

∞
∑

q=n+1

(m − n)αm+n−q · αq +
1

2

∞
∑

q=1

(m − q)αm+n−q · αq

Except for the second term in this last expression, it is already nor-
mal ordered. Twice the second term is

n
∑

q=1

(q − n)αq · αm+n−q =
n
∑

q=1

(q − n)αm+n−q · αq +
n
∑

q=1

(q − n)qDδm+n

where D = ηµνηµν is the number of dimensions. So:

[Lm, Ln] ==
1

2

∞
∑

q=−∞
(m − n)αq · αm+n−q +

1

2
D

n
∑

q=1

(q2 − nq)δm+n

Using Helpful Facts (2) and (3) to do the two sums gives finally the
Virasoro algebra:

[Lm, Ln] = (m − n)Lm+n +
D

12
(m3 − m)δm+n.
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2. Virasoro operators really do generate conformal transformations.

Recall that fixing conformal gauge in the Polyakov theory leaves a residual
gauge invariance: reparametrizations of the form

σ± 7→ σ̃±(σ±)

change the metric in a way that can be compensated by a Weyl gauge trans-
formation, preserving the form of the metric. Such transformations are called
conformal transformations. The infinitesimal form of such a transformation is

σ̃± − σ± ≡ δσ± = ξ±(σ±).

This is two functions worth of transformations (an infinite-dimensional group),
a useful basis for which is Fourier modes:

δǫ±m
σ± = ǫ±meimσ±

.

Under this transformation, a scalar on the worldsheet transforms as X(σ+, σ−) 7→
X(σ̃+, σ̃−) = X + δǫX with

(⋆) δǫX =
∑

m,±
ǫ±meimσ±

∂±X.

When quantizing the string, after some circuitous logical meanderings, we dis-
covered that we should impose

(Lm − δma)|phys〉 = 0 = (L̃m − δma)|phys〉, m > 0

on physical states. Using the canonical commutation relations, show that the
operators Lm, L̃m indeed generate the transformations (⋆) by commutators, i.e.

δǫX = i[ǫ+
mLm + ǫ−mL̃m, X].

Note: If you prefer, do this problem with a euclidean worldsheet, using com-
plex coordinates on the plane (i.e. replace eiσ+

with z and eiσ−

with z̄ ). Only
the notation is different.

I’m just going to show the left-moving bit; the right-moving version
is identical. The mode expansion of X (in α′ = 2 units) is

X(σ+, σ−) = x + pτ + i
∑

n∈ZZ

αn

n
e−inσ+

+ i
∑

n∈ZZ

α̃n

n
e−inσ−

.
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Plugging, we get

[
∑

m

ǫ+
mLm, X] =

∑

m

ǫ+
m

(

∑

n 6=0

i

n
e−inσ+

[Lm, αn] + [Lm, x̂]

)

The zeromode p ∼ αn=0 drops out because [Lm, α0] = 0. More gen-
erally, from the previous problem we have [Lm, αµ

n] = −nαµ
n+m. We

mustn’t forget the center-of-mass position, x̂, term in X, however1,
which has (restoring units for a moment)

[αν
0 , x̂

µ] = −
[

√

2

α′p
ν , x̂µ

]

= −i

√

2

α′η
νµ =⇒ [Lm, x̂µ] = −i

√

2

α′α
µ
m.

So
[i
∑

m

ǫ+
mLm, X] = i

∑

m,n 6=0

ǫ+
m(−i)e−inσ+

αµ
n+m

=
∑

m

ǫ+
mei(m−(n+m))σ+

αn+m

= −i
∑

m

ǫ+
meimσ+

(

∑

q

αne
−iqσ+

)

=
∑

m

ǫ+
meimσ+

(∂+X)

3. A simple 2d GR problem.

(a) Find the Christoffel symbols Γk
ij (i, j, k = z, z̄) for the conformal gauge

metric
ds2 = e2ω(z,z̄)dzdz̄.

The only nonzero ones are Γz
zz and Γz̄

z̄z̄ :

Γz
zz = 2∂ω, Γz̄

z̄z̄ = 2∂̄ω.

(b) Show that the covariant expression for the reparametrization FP ghost
action

Sgh =
1

2π

∫

d2σ
√

γbab∇acb

1Thanks to Koushik Balasubramanian for reminding me of this.
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(here ∇ is the metric-compatible covariant derivative) reduces in conformal
gauge to

Sgh =
1

2π

∫

d2z (bzz∂z̄c
z + bz̄z̄∂zc

z̄) .

[note that
√

γ ≡
√
− det γ by definition].

The nonzero Γs aren’t the ones that appear above, so the derivatives
reduce to ordinary ones.

(c) [bonus] Find the Ricci scalar for the conformal gauge metric.

The Riemann tensor has only one component (up to symmetries):

Rz
zzz̄ = −∂̄∂ω.

The Ricci tensor is Rzz̄ = Rz̄z = −2∂̄∂ω, so the Ricci scalar is

R = −8e−2ω∂∂̄ω.

4. Kaluza-Klein decomposition.

(a) Find the (D − 1)-dimensional spectrum of fields (i.e. their masses) that
arises by compactifying a single free massive scalar field φ on a circle of radius
R, governed by the action

SD[φ] = −
∫

dDx
(

∂Mφ∂Mφ + m2φ2
)

(1)

where the indices M, N = 0..D − 1; we’ll reserve µ, ν = 0..D − 2 for the
noncompact directions. (Note: No gravity yet.) [Hint: expand the field in a
basis of single-valued functions on the circle on which the translation operator
eip̂y (y ≡ xD−1) acts diagonally.]

Expand φ(y, x) =
∑

n∈ZZ
einy/R√

2πR
φn(x). Note that the reality of φ means

φn = φ−n, just like for free bosons on the cylinder. Then the wave
equation is

0 = (∆D − m2)φ = (∆D−1 + ∂2
y − m2)φ =

∑

n

(

∆D−1 −
n2

R2
− m2

)

φn

So the mass of the nth KK mode is

m2
n = m2 +

( n

R

)2

.

6



(b) In lecture 4 I claimed that compactifying D-dimensional GR on a circle
produced a D − 1-dimensional graviton gµν , a D − 1-dimensional gauge field
Aµ, and a scalar field σ (plus all of their massive KK harmonics).

Demonstrate that this is the case (to your own satisfaction) starting from the
ansatz for the D-dimensional metric

ds2 = GMNdxMdxN = e2σ(dy + Aµdxµ)2 + gµνdxµdxν .

where y ≡ y + 2πR is the coord on the circle. (e.g. you might want to show
that the D-dimensional Einstein-Hilbert term

1

8πG
(D)
N

∫

dDx
√

GRD

produces kinetic terms for g, A, σ.) [Hint: use the gauge invariance Aµ →
Aµ +∂µǫy(x) (which is a subgroup of the D-dimensional coordinate invariance)
to constrain the possible terms in the Lagrangian.]

I claimed further that the charge to which the gauge field coupled was the
KK momentum (i.e. the momentum along the circle). As a test of this claim,
couple the scalar in part (a) to D-dimensional gravity – i.e. replace (1) with
the fancy covariant expression

SD[φ, G] = −
∫

dDx
√

G
(

∇Mφ∇NφGMN + m2φ2
)

.

– and show that this expression includes a minimal coupling between A and any
mode of φ which carries momentum along the circle, with strength proportional
to the momentum.

The first part of this question is reviewed in Polchinski §8.1 . Specif-
ically, he finds that the D-dimensional Ricci scalar, in the ansatz
above, is

R(D) = R(D−1) − 2eσ∇2eσ − 1

4
FµνF

µν ,

so we see possible kinetic terms for the lower-dimensional metric,
the KK gauge field and the radion scalar σ. Note that gauge invari-
ance restricts the possible terms on the RHS to the ones appearing
here times possible functions of σ. The coefficient functions can be
determined by investigating special cases of the ansatz.
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To find the charge of a KK mode, let’s focus on a mode of the min-
imally coupled scalar φ, and in particular its kinetic term, which is
(note that on scalars we don’t need the fancy derivatives) ∇Mφ∇NGMN .
Unfortunately, we need here the inverse metric for the ansatz above.
In matrix form,

GMN =

(

e−2σ Aµ

Aν gµν + e2σAµAν

)

MN

,

so with some help from Mathematica, I get

GMN =

(

e−2σ + A2 −Aµ

−Aν gµν

)MN

where µ, ν indices are all raised and lowered with gµν and hopefully

the block notation is clear. Using this and
√

det G(D) = e−σ
√

det g, we
get

√
det G(D)∇Mφ∇NGMN =

(

e−2σ + A2
)

(∂yφ)2 − 2Aµ(∂yφ)(∂µφ) + ∂µφ∂νφgµν .

Plugging in the KK expansion for φ and integrating over the extra
dimension (using

∫

dyei(m+n)y/R = 2πδm+n, and ignoring KK modes of
A and g!) gives

∫

dy2πR
0

√
G(D)

(

∇Mφ∇NGMN
)

=
√

g e−σ
∑

n∈ZZ

(

−e−2σ
( n

R

)2

φnφ−n − A2
( n

R

)2

φnφ−n + 2i
n

R
A · ∂φnφ−ng

µν∂µφn∂νφ−n

)

.

The action for the couplings of the KK modes of φ to the zeromode
of the gauge field is then

S = −
∫

dD−1x =
√

g e−σ
∑

n∈ZZ

(−e−2σ
( n

R

)2

φnφ−n

−
(

∂µφn − i
n

R
φn

)(

∂µφ−n − i
n

R
φ−n

)

+ gµν∂µφn∂νφ−n) .

This is a minimal coupling of the nth KK mode to A with charge
proportional to n.

(c) What is the D−1-dimensional Newton constant in terms of the D-dimensional

one, G
(D)
N ? What is the gauge coupling for the KK gauge field (i.e. the unit
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of electric charge)? Do the engineering dimensions of all these quantities make
sense?

1

16πG
(D−1)
N

R(D−1) + ... =
1

16πG
(D−1)
N

∫ 2πR

0

dyR(D)

plus the fact that g
(D−1)
µν is a zeromode of g

(D)
µν says

1

16πG
(D−1)
N

=
2πR

16πG
(D−1)
N

.

In terms of the D and D − 1-dimensional Planck masses,

(M
(D)
P )D−2 ≡ 1

16πG
(D)
N

,

this says

M
(D−1)
P =

(

2πR(M
(D)
P )D−2

)1/D−3

.

Note that the BHS has dimensions of mass.

The coupling between A and φ was n/R. By rescaling A → Ã ≡ RA,
we can put the R in front of the gauge field kinetic term:

1

16πG
(D)
N

∫

dy(−1

4
eσF 2) = − 1

4 · 16πG
(D)
N

2πReσR2F̃ 2

= −1

4
M

(D)
P 2πR3eσF̃ 2 ≡ − 1

4g2
Y M

F̃ 2

So we identify the D − 1 dimensional gauge coupling as

1

g2
Y M

= M
(D)
P 2πR3

(assuming 〈eσ = 1〉) , which indeed has the right dimensions to be the
gauge coupling of a D − 1 dimensional gauge field.

(d) [Bonus Q] What do you get if you compactify pure gravity on a space with
isometry group G?

As you might expect you get nonabelian KK gauge symmetry. The
best way to see this is to use the killing vectors to construct the
ansatz. It’s a hard to get chiral matter in representations of these
gauge groups, at least from smooth geometries.
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5. No Goldstone bosons in two dimensions.

[This is really more a diatribe than a problem.] (a) Show that the euclidean
2d massless scalar Green function G2

∇2G2(z, z
′) = −2πδ2(z − z′) (Gerbil)

(z = σE
1 + iσE

2 ) is given by

G2(z, z
′) = − ln |z − z′|,

for example by Fourier transform.

Translation invariance says

G2(σ, σ′) = G2(σ − σ′) =

∫

ddk

(2π)d
|d=2 eik·(σ−σ′)G̃(k).

The Fourier transform of (Gerbil) is

−k2G̃(k) = − 1

2π
.

Back in position space,

Gd(z, 0) = G2(z) =

∫

ddk

(2π)d

1

k2
eik·σ

=

{

c
|σ|d−2 , d 6= 2

− ln |z|, d = 2
.

[I wasn’t careful about the factors of −1 and π in doing the Fourier transform,
but the final coefficients can be checked by taking box of both sides and com-
paring to (Gerbil).] Note that the bad IR (large σ) behavior of the Green’s
function gets even worse in d < 2.

(b) The long-distance behavior of G2 has important implications for the physics
of massless scalars in two dimensions. Thinking of G2 as the two point function
of a massless scalar

G2(z, z
′) = 〈X(z)X(z′)〉,

let’s ask the following question:

There is no potential energy for the field X in the Polyakov Lagrangian. A
four-dimensional physicist Someone used to physics in (3+1)-dimensions might
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think that this means that there is a vacuum for every value of X, i.e. that
X is a modulus. Let’s try to fix the expectation value of the scalar 〈X〉 =
x and see what happens. Perturb the (conjectured) vacuum |x〉 a little bit
at the worldsheet position z by inserting the operator X there. To measure
what happens, we insert the operator X at z′. The correlator G2 can thus be
interpreted as a measurement of how the effects of our perturbation fall off with
distance. What happens? Contrast this with the behavior you would see for a
scalar field with a flat potential in three or more (really 2 + ǫ) dimensions. It
may be useful to remind yourself about the (even more dramatically infrared-
problematic) case of (0+1) dimensions, i.e. QM.

Note, by the way, that the Goldstone-ness of the massless bosons (i.e. whether
they are massless because of a symmetry) is not crucial. In non-supersymmetric
sigma models, one expects massless bosons whose mass is not protected by a
symmetry to be lifted quantumly, but in supersymmetric theories, this need not
be the case. So this story is also important for supersymmetric NLSMs where
the target space has no continuous isometries, as is the case for Calabi-Yau
manifolds.

This result is called the Coleman-Mermin-Wagner theorem (sometimes Hohen-
berg, too). For help, read S. Coleman, “There are no Goldstone bosons in
two-dimensions.,” Commun.Math.Phys. 31:259-264 (1973).

A familiar fact is that non-relativistic QM of a particle in a potential
with degenerate minima does not have degenerate vacua. Tunneling
between the minima leads to mixing; the true vacuum is some su-
perposition. If the potential minima are related by a symmetry, the
vacuum does not spontaneously break the symmetry, it is a symmet-
ric superposition.

A less extreme version of this in QM, which also won’t surprise you,
is that for a particle with no potential, a localized wavefunction will
spread out, and the ground state is uniform.

Though these effects aren’t usually described in these terms, the
long-distance growth of the d < 2 propagator we saw in part (a) is
a direct signal of them. And the fact that ln |σ − σ′| grows at large
separation means that a similar thing happens in two dimensions: if
we try to localize the vev of X̂, it will be washed out by fluctuations,
and the ground state wavefunctional for the free boson is really a sum
over values of X. This is exactly what we accomplish by integrating
over the target space of the boson in the path integral.
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If the boson field space is not swept out by the action of some sym-
metry (for example if the kinetic terms do not respect the symme-
try, but nevertheless the boson remains flat quantum mechanically,
e.g. because of supersymmetry), it just means that this sum is not
weighted with the uniform distribution.

In conclusion, 2d massless bosons exist and can be quite sensible and
interesting, they just aren’t Goldstones ever.

6. The guts of the Veneziano amplitude. Consider a collection of D two-
dimensional free bosons Xµ governed by the action

S = − 1

4π

∫

d2σ∂aXµ∂aXµ.

(a) Rotate eiS to Euclidean space (d2σ = −i(d2σ)E) and compute the Euclidean
generating functional

Z[J ] =
〈

e
R

(d2σ)EJµXµ

〉

≡ Z−1

∫

[dX]eiSe
R

(d2σ)EJµXµ

(where Z ≡ Z[J = 0], but please don’t worry too much about the normalization
of the path integral.) [Hint: use the Green function from the previous problem
and Wick’s theorem.]

In euclidean space,

S = − 1

4π

∫

(d2σ)E(−i)(−∂aXµ∂
aXµ).

So the Boltzmann factor in euclidean space is

eiS = e−SE , SE =
1

4π

∫

(d2σ)E∂aX · ∂aX.

The generating functional is

ZE[J ] = 〈e
R

(d2σ)EJµXµ〉 = Z−1

∫

[DX] e
R

(d2σ)E( ∂X·∂X
4π

+J ·X)

= Z−1

∫

[DX] e
R

(d2σ)E

“

−X∂2X
4π

+J ·X
”

= e
1
2

R

(d2σ)EJµ 2π
∂2 Jµ = e

1
2

R

(d2σ1)E

R

(d2σ2)EJµ(σ1)( 2π
∂2 )σ1,σ2

Jµ(σ2)
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The Green function from the previous problem is

G(σ1, σ2) =

(

2π

∂2

)

σ1,σ2

= − ln |z1 − z2|.

So we find
Z[J ] = e

1
2

R

d2z1
R

d2z2Jµ(z1,z̄1) ln |z1−z2|Jµ(z2,z̄2)

(b) Show that

〈

N
∏

i=1

: e−i
√

2α′ki·X(σ(i)) :

〉

=
N
∏

i,j=1

|zi − zj |α
′ki·kj

where σ(i) label points in Euclidean space, zi = σ
(i)
1 + iσ

(i)
2 , α′ is the Regge

slope, and kµ
i are a set of arbitrary D-vectors in the target space.

[Note: In the last two problems I’ve rescaled Xusual = Xhere√
α′

relative to our
usual normalization of the free bosons – these X variables are dimensionless in
the target space.]

Choosing the source J to be

Jµ = −i
√

2α′
N
∑

i

kµ
i δ2(σ − σi)

we get
〈

N
∏

i=1

: e−i
√

2α′ki·X(σ(i)) :

〉

= eα′
PN

i,j=1 ki·kj ln |zi−zj |

which reproduces the stated expression.

There is a bit of an important lie here, though. The field theory
in which we’re calculating this correlator has a symmetry Xµ 7→
Xµ + constµ, which is translation invariance in the target space. The
resulting conserved charge is momentum, k units of which is injected
into the correlator by the operator eikX. But the fact that charge is
conserved (and not eaten by the vacuum) means that there should
be a law saying that amplitudes predicting nonconservation should
vanish: The amplitude should be proportional to δD (

∑

i k
µ
i ). What

did we leave out? We left out the zeromode of Xµ (I’ll call it xµ),
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which means that ∂2 isn’t really invertible (it’s only invertible on a
subspace of the configuration space which cuts out the zeromode,
and that’s when its inverse is G ∼ ln ..). Putting it back in is simple:
the zeromode doesn’t appear in the kinetic term for X, only in the
J · X term. With our choice of J above, the zeromode integral is

D−1
∏

µ=0

∫

dxµ ei
PN

i=1 kµ
i xµ ∝ δD

(

∑

i

kµ
i

)

14


