MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Solution Set 7

D-branes and orientifolds Reading: Polchinski, Chapter 13 and v. I pp. 189-192, 226-229, §8.8, v. II pp. 29-31, §10.8, §13.2; Uranga, chapter 10.

Due: Thursday, November 29, 2007 at 11:00 AM in lecture or in the box.

1. BPSness and multiple branes.

(a) Which of the 32 supercharges of type II are conserved in the presence of a Dp-brane and a D(p+2k)-brane which lie along the 01...p and 01..(p+2k) coordinate axes, respectively? How much supersymmetry does the D0-D4 system preserve?

A Dp-brane along the m = 0...p coordinate directions preserves the supercharges of the form

$$Q^p \equiv Q_\alpha + (\beta_p^\perp \tilde{Q})_\alpha$$

with

$$\beta_p^{\perp} \equiv \prod_{m=0}^p \beta^m.$$

We can write the corresponding β_{p+2k}^{\perp} for a D(p+2k) brane as

$$\beta_{p+2k}^{\perp} = \beta_p^{\perp} \beta_p^{\perp\dagger} \beta_{p+2k}^{\perp}$$

using the fact that β is unitary. The supercharges which are shared among Q^p and Q^{p+2k} are then those invariant under

$$\beta_p^{\perp\dagger}\beta_{p+2k}^{\perp}$$

We can diagonalize this by making complex pairs out of the 2k coordinates along the D(p+2k)-brane which are perpendicular to the Dp-brane,

$$\beta_p^{\perp\dagger}\beta_{p+2k}^{\perp} = e^{\pi i (s_1 + \dots + s_k)},$$

with $s_{\alpha} = \pm \frac{1}{2}$. For k = 1, 3, 5, this is $e^{\pm i\pi/2} = \pm i$, and hence no Qs are shared. For k = 2, *e.g.* the D0-D4 system, this is ± 1 and half of the Qs (namely 8) are preserved.

(b) Consider on the worldvolume of N > 1 D4-branes a configuration of the gauge field F which carries a topological charge

$$\frac{1}{16\pi^2} \int_{\text{space}} \text{tr }_{N \times N} F \wedge F = 1$$

(here 'space' is meant to denote an integral over the four spatial dimensions of the D4-brane at fixed time); this quantity is called the 'instanton number' because in 4d gauge theory there exist finite-action solutions of the euclidean EOM which carry such charge¹.

Show that any such configuration carries the RR charge of one D0-brane. (Such configurations which preserve supersymmetry describe the condensation of the massless scalars arising from the 0-4 strings – on this *Higgs branch* of the moduli space, the D0-brane can be said to dissolve into the D4-brane.)

$$S_{D4} \supset i\mu_4 \int_5 \operatorname{tr} \left(e^{2\pi\alpha' F_2 + B_2} \wedge \sum_{q=1,3,\dots} C_q \right) \supset \frac{i}{2} (2\pi\alpha')^2 \mu_4 \int \operatorname{tr} F_2 \wedge F_2 \wedge C_1.$$

The charge of the fourbrane and of the zerobrane are related by

$$2(4\pi\alpha')^2\mu_4 = \mu_0$$

So a configuration of the worldvolume gauge fields on the D4-brane where

tr
$$F \wedge F = 8\pi^2$$

will carry the RR charge of the D0-brane.

(c) [More optional than usual] Show that if we take a pair of coincident Dpbranes and rotate one relative to the other, the amount of preserved supersymmetry is determined by whether the rotation matrix can be written as an element of a subgroup of SO(n) which preserves a spinor.

¹There are of course many configurations which carry the charge but do not solve the equations of motion. The gauge field configurations which actually describe instantons are (anti-)self-dual: $F = \pm \star F$. The instanton number is also called the 'second Chern class' or 'first Pontryagin class'.

Consider the case when the branes share 3+1 dimensions, so that the relative rotation M is in general an element of SO(6). Show that if $M \in SU(3)$ but $M \notin SU(2)$, the spectrum contains chiral matter under the *relative* U(1) which couples to the strings stretched between the two branes.

If you get stuck, see BDL hep-th/9606139.

The rotation matrix relating the branes acts just like a holonomy matrix on the spinors. If it's in a subgroup of SU(3), there will be an invariant spinor by the same argument we used to see that CY compactification preserves a spinor.

2. Dp-D(p+2) system.

(a) In type II string theory in flat space, consider a Dp-brane and a D(p+2)brane which are parallel in p + 1 flat dimensions. Show that the spectrum of strings stretching between them includes a tachyon if they are close enough together.

The NS zero-point energy for a string stretched between a Dp-brane and a $D(p + \#_{ND})$ brane sharing p + 1 dimensions is

$$E_0^{NS} = -\frac{1}{2} + \frac{\#_{ND}}{8}$$

[Polchinski (13.4.8)]. For this situation, $\#_{ND} = 2$ and we get

$$E_0^{NS} = -\frac{1}{4}.$$

There is therefore a tachyon in this sector if the branes are close enough. The mass of the ground state is

$$m^2 = \left(\frac{(\delta x)^2}{2\pi\alpha'}\right)^2 - \frac{1}{4\alpha'}.$$

(b) Make a conjecture for the endpoint of the condensation of this tachyon. *Hint:*

$$S_{Dp} \supset \int_{Dp} \sum_{q} C_{RR}^{(q)} \wedge \operatorname{tr} e^{aF} = \int_{Dp} \left(C_{RR}^{(p+1)} + \operatorname{atr} F \wedge C_{RR}^{(p-1)} + \dots \right)$$

where a is some numerical stuff with factors of α' .

On the worldvolume of the D(p+2)-brane, there are terms

$$S_{D(p+2)} \subset \mu_{p+2} \int \left(C_{RR}^{(p+3)} + C_{RR}^{(p+1)} 2\pi \alpha' \text{tr } F + \ldots \right)$$

so that magnetic flux tr $F = 2\pi$ on the D(p+2) worldvolume carries Dp charge. This configuration can be shown to have lower energy than the pair of Dp and D(p+2) branes.

3. O-plane charge.

How many Dp-branes cancel the RR charge of an Op^+ plane (the SO kind)?

Hint: consider what happens when you T-dualize type I, and notice that the number of connected components of the fixed locus of $x^i \to -x^i$, i = 1..q, with x^i periodic, is 2^q .

[OK, this is an uninspired question, but I didn't get to mention it in lecture.]

Compactifying type I on an *n*-torus, the action Ω T-dualizes to an action

$$\Omega(-1)^{nF_L}\mathcal{I}_n$$

where

$$\mathcal{I}_n: x^i \to -x^i, \quad i=1..n.$$

This map has 2^n fixed points on the *n*-torus, each of which is an O(9n)-plane. The 16 D9-branes of type I turn into 16 D(9-n)-branes. Note that there are 16 D9-branes in the sense that the *rank* of SO(32)is 16, and hence at a generic point in the moduli space of wilson lines, SO(32) is broken down to $U(1)^{16}$. Therefore the RR charge of 16 D(9-n) branes cancels the charge of 2^n O(9-n) branes. We have

$$2^{n}\mu_{Op} = -16\mu_{p}$$
$$\mu_{Op} = -2^{4-(9-p)}\mu_{p} = -2^{p-5}\mu_{Dp}.$$

Note, for example, that this means that an O3-plane carries the charge of a quarter of a D3-brane.

4. A string duality.

Consider the worldvolume theory of a D-string in the type I theory in ten flat dimensions. (Recall that unlike the type I F-string, the D-string carries a charge because the RR 2-form potential survives the orientifold projection.) Stretch the D1-brane along the 01 directions. What is the spectrum of 11-strings after performing the orientifold projection? Recall that the type I vacuum contains 32 D9-branes; what is the spectrum of 1-9 strings?

Show that the orientifold projection leaves a \mathbb{Z}_2 subgroup of the worldvolume gauge group which acts on the 1-9 strings.

Where have you seen this theory before?²

Put the D1-brane along $x^{0,1}$ at $x^2 = \dots = x^9 = 0$.

Consider first the sector of 1-1 strings, *i.e.* those with both ends on the D1-brane. Before the orientifold, they give the spectrum of the D1-brane in type IIB, which is the dimensional reduction of the 4d $\mathcal{N} = 4 U(1)$ gauge theory to two dimensions.

 Ω acts differently on the 01 oscilators (NN) and the 2..9 oscillators (DD); this is because worldsheet orientation reversal acts with a -1 on the tangential derivative to the boundary (and hence on the NN vertex operators), but with a +1 on the normal derivative (and on the DD vertex operators). This means that the transverse scalars $X^{2..9}$ which move the D1-brane around survive, but the gauge field does not. The holonomy of the gauge field $e^{i \oint A}$ is mapped to $e^{-i \oint A}$ by the action of Ω . A \mathbb{Z}_2 survives, which acts on charge 1 fields with a -1; this is a \mathbb{Z}_2 gauge symmetry.

Of the fermions, only the 8_s survives the Ω projection. The action of Ω on the α^{μ} is related by worldsheet susy to the action on ψ^{μ} – this amounts to an extra -1 in the action on $\psi^{2..9}$ relative to those in the 9-9 sector. This means that on the spinor ground states $|s_0, s_1...s_4\rangle$, Ω acts as

$$\Omega = -e^{\pi i (s_1 + s_2 + s_3 + s_4)}.$$

The $\mathbf{8}_s$ is the representation where $\sum_{a=1}^4 s_a$ is even.

Now consider strings stretched between the D1 and the D9. Before the orientifold, there are independent 1-9 strings and 9-1 strings in the (-, N) and $(+, \bar{N})$ of the $U(1) \times U(N)$ gauge symmetry. These are mapped to each other by Ω (and at the same time U(N = 32) gets broken to SO(32)).

For $\#_{ND} = 8$, there are no massless particles in the NS sector from the formula used already in problem two. The R-ground state gives

²This wonderful observation is from hep-th/9510169. See also JP $\S14.3$.

a chiral fermion, of the opposite D-string worldsheet chirality from the 8_s in the 11-sector, in the (+, 32) of $\mathbb{Z}_2 \times SO(32)$, (*i.e.* the + is meant to denote the fact that it transforms with a minus sign under the residual \mathbb{Z}_2 gauge group on the D1).

This spectrum is exactly that of an SO(32) heterotic string stretched along $x^{0,1}$, including the GSO projection.