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Today

1. Finish hindsight derivation

2. What holds up the throat?

3. Initial checks (counting of states)

4. next time: Supersymmetry self-defense

Previously, we had three hints for interpreting the bold Assertion that we started with, that hidden
inside any non-Abelian gauge theory is a quantum theory of gravity.

1. The Weinberg-Witten theorem suggests that the graviton lives on a different space than the
Quantum Field Theory.

2. This comes from the holographic principle. The idea, motivated by black hole thermodynam-
ics, is that the theory of gravity should have a number of degrees of freedom that grows more
slowly than the volume (non-extensive) suggesting that the quantum gravity should live is
some extra (more) dimensions than the QFT.

3. The structure of the Renormalization Group suggests that we can identify one of these extra
dimensions as the RG-scale.

In order to make these statements a little more concrete, we will make a number of simplifying
assumptions. That means we will not start by writing down the more general case of the corre-
spondence, but we will start with a special case.

1. There are many colors in our non-Abelian gauge theory. The motivation for this is best given
by the quote:

“You can hide a lot in a large-N matrix.”
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– Shenker

The idea is that at large N the QFT has many degrees of freedom, thus corresponding to the
limit where the extra dimensions will be macroscopic.

2. We will work in the limit of strong coupling. The motivation for that lies in the fact that we
know some things about weakly coupled Field Theories, and they don’t seem like Quantum
Gravity. This constrains the manner in which we take N to be large, since we would still like
the system to be interacting. This means that we don’t want vector models.

We want the theory to have as much symmetry as possible. However there is a theorem that
stands in the way of this.

Theorem (Coleman-Mandula) : All bosonic symmetries of a ”sensible” S-matrix (nontrivial,
having finite matrix elements) belong to the Poincare group.

We are going to use all possible loopholes to circumvent this theorem. The first lies in the
word ”bosonic” and the second one in ”sensible”.

3. SuperSymmetry (SUSY)

(a) It constrains the form of the interactions. This means that there are fewer candidates
for the dual.

(b) Supersymmetric theories have more adiabatic invariants, meaning observables that are
independent of the coupling. So there are more ways to check the duality.

(c) It controls the strong-coupling behavior. The argument is that in non-SUSY theories,
if one takes the strong-coupling limit, it tends not to exist. The examples include QED
(where one hits the landau Pole for strong couplings) and the Thirring model, which is
exactly solvable, yet doesn’t exist above some coupling.

(d) Nima says it’s simpler (http://arxiv.org/abs/0808.1446).

The most supersymmetric theory in d=4 is the N = 4 SYM and we’ll be focusing on this
theory for a little while. It has the strange property that, unlike other gauge theories, the
beta function of the gauge coupling is exactly zero. This means that the gauge coupling
is really a dimensionless parameter, and so, reason number (e) to like SUSY is...

(e) SUSY allows a line of fixed points. This means that there is a dimensionless parameter
which interpolates between weak and strong coupling.

4. Conformal Invariance: The fact the coupling constant is dimensionless (even quantum-mechanically)
says that there is scale invariance. The S-matrix is not finite! Everything is soft gluons.

Scale invariance applies to both space and time, so Xµ → λXµ ,where µ = 0, 1, 2, 3. As we
said, the extra dimension coordinate is to be thought of as an energy scale. Dimensional anal-
ysis suggests that this will scale under the scale transformation, so z → z

λ . The most general
five-dimensional metric (one extra dimension) with this symmetry and Poincare invariance is
of the following form:

ds2 = ( z̃
L̃
)2ηµνdxµdxν + dz̃2

z̃2 L2 . Let z̃ = L̃
L z̃ ⇒ L̃ = L We can now bring it into the more

familiar form (by change of coordinates) ds2 = ( z
L)2ηµνdxµdxν + dz2

z2 L2, which is AdS5. It
turns out that this metric also has conformal invariance. So scale and Poincaré implies
conformal invariance, at least when there is a gravity dual. This is believed to be true more

2



generally, but there is no proof. Without Poincaré invariance, scale invariance definitely does
not imply conformal invariance.

We now formulate the guess that a 4-dimensional Conformal field Theory is related to a
theory of Gravity on AdS5

A specific example is N=4 SYM which is related to IIB Supergravity on AdS5 × S5.

Note: On a theory of gravity space-time is a dynamical variable, where you specify asymp-
totics. This CFT defines a theory of gravity on spaces that are asymptotically AdS5.

Why is AdS5 a solution?

1. Check on PSet

2. Use effective field theory (which in this case just means dimensional reduction) to elaborate
on my previous statement that the reason why this is a solution is that ”the flux holds it
up”. To do this let’s consider the relevant part of the supergravity action, which is S =
∫

dDx[
√

GR(D) − Fg ∧ ⋆Fg]
As an example consider the case where D=10 and g=5 (note that we are working in dimensions

where G
(D)
N = 1 = 1/5! = 2 = 4π).

[Note: The reference for this is Denef et al hep-th/0701050]

Let’s make an Ansatz (called Freund-Rubin) The metric is some space-time (x) plus a q-
sphere of radius R, so that ds2 = gµνdxµdxν + R(x)2Gmndymdyn and furthermore for the
flux though the q-sphere we have

∫

Sq Fq = N

To find the form of this part of the metric as a result of the flux, we integrate over the q-sphere
and get the action in D-dimensions, which will contain a term which is
∫

Sq

√
GGm1n1 ...Gmqnq(Fg)m1...mq(Fg)n1...nq

We should then think of R(x) as a ”moduli field”. Now we have to evaluate the following
integral

∫

Sq

√
GR(D) =

√
gRq[R + a

R2 + ...]

We will now go to something called the FRAME GAME
To make the D-dimensional Einstein-Hilbert term canonical, we can do a Weyl-rescaling of
the metric, meaning to define a new metric gE

µν = λ(x)gµν . So the new metric is some function
of the space-time variables times the old metric.
So

√

|gE | = λd/2√g , RE = λ−1R.

We’ll pick λ to absorb the factor of R, so
√

gERE = λd/2−1√gR(d) = Rq√gR(d) , λ = R2q/d−2.
We know that the flux is the integral over the q-sphere, so

∫

Sq F = N ⇒ N ∼ N
Rq , so the

flux term of the potential is Vflux(R) ≡
∫

Sq F ∧ ⋆F = V ol(Sq)
√

gF 2 = Rgλ−d/2
√

gE( n
Rq )2

So Vflux(R) ∼ N2

Rα − 1
Rβ . where α > β > 0

At small R the first term in the effective potential dominates, while for R large, the effective
potential approaches zero from below. In between there is some minimum. To find the actual
value of this we take 0 = V ′(Rmin) ⇒ N2 ∼ Rα−β

min .

The fact that the potential goes to zero at large R is unavoidable. It is because when R is
large, the curvature is small and flux is dilute. So all terms in the potential go away.
For special values of α and β, we get that N ∼ R4

min = L4
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This endeavor is called “flux compactification” and it is the way to find vacua of string theory
without massless scalars.

Furthermore, we can add some effective action for scalars with m2
R ∼ V ′′(Rmin), which

looks like this : S = 1
2

∫

ddx
√

ge(RE − 2Λ)R. The cosmological constant is determined as
Λ = Veff (Rmin) < 0

The fact the the cosmological constant exists, means that the metric is not flat.

The equation of motion is the following: 0 = ∂S
∂gµν

⇒ Rµν = gµν(1
2R − Λ)

⇒ R = 2d
d−2Λ ⇒ Rµν(−2Λ

2−d )

We know the solution for AdSd, which has the metric ds2 = L2 dr2+ηµνdxµdxν

r2

Now I will describe the right way to compute curvatures, which is to use what is called “tetrad” or
“vielbein” or “Cartan-Weyl” method.

There are three steps

Rewrite the metric as ds2 = (er̂)2 + eµ̂eν̂ηµν ,where I define er̂ ≡ Ldr
r and ex̂µ ≡ Ldxµ

r

Cartan 1 demands that they are covariantly constant and is formulated as follows: dea = −ωabeb,
where the ω is called the spin connection.

For example der̂ = 0 and eµ̂ = − L
r2 dr ∧ dxµ = − 1

Ler̂ ∧ eµ̂ ⇒ ωµ̂ν̂ = − 1
Leµ̂ = −ωr̂µ̂

Why do we care about ω? Here’s why:

Cartan 2 Rab = dωab + ωacωcb = Rab
µνdxµ ∧ dxν

From that you can get the Ricci tensor, which appears in the equation of motion, by contracting
some indices Rµ

ν = Rρµ
ρν

Let’s do some examples:
Rµ̂ν̂ = ωµ̂r̂ωr̂ν̂ = − 1

L2 eµ̂ ∧ eν̂

Rµ̂r̂ = dωµ̂r̂ = 1
L2 er̂ ∧ eµ̂

Rµν
ρσ = − 1

L2 (δµ
ρ δν

σ − δµ
σδν

ρ )

Rµr
ρr = − 1

L2 δµ
ν

Rµν = −d
L2 gµν ⇒ 2Λ

2−d = d
L2 ⇒ Λ = −d(d+1)

2L2

Counting of degrees of freedom [Susskind-Witten, hep-th/9805114]

The holographic principle tells us that the area of the boundary in planck units is the number of
degrees of freedom (maximum entropy).
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Area of boundary
4GN

?
= number of dof’s of QFT≡ Nd

Both sides are equal to infinity, so we need to regulate our counting somehow.

The picture we have of AdS is a collection of copies of Minkowski space of varying size and the
boundary is the locus where they get really big. The area is defined as A =

∫

R3

√
gd3x =

∫

R3 d3xL3

r3

This is infinite for two reasons: from the integral over x and from the fact that r is going to zero.

Let’s regulate the Field Theory first. We put the thing on a lattice, introducing a low distance
cut-off δ and we put it also in a box of size R. The number of degrees of freedom is the number of
cells times N2, so Nd = R3

δ3 N2. To regulate the integral we write before, we stop not at r = 0 but

we cut it off at r = δ. Aδ =
∫ ∫ ∫

d3xL3

r3 |r=δ = R3L3

δ3

Now we can translate this

L2

G10
N

∼ N2 ⇒ G
(5)
N =

G
(10)
N

L5

Nd = L3R3

G
(5)
N

δ3
= A

G
(5)
N

So AdS/CFT is indeed an implementation of the holographic principle.
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