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1 Preview of AdS–CFT Correspondence

Ideology:

fields in AdS ←→ local operators of CFT

spin spin

mass scaling dimension ∆

In particular, for scalars, m2L2
AdS = ∆(∆ − 4) [recall that λ = L4

AdS/α′2]1

Last time we discussed the Kaluza-Klein (KK) harmonics of 10d supergravity (‘SUGRA’) fields
(= massless string modes). These correspond to superconformal primary operators of the N = 4
theory according to:

Φ(x, y) =
∑

ℓ

φℓ(x)Yℓ(y)

Yℓ = Ti1,...,iℓy
i1 · · · yiℓ ←→ Ti1,...,iℓTr (X{i1 · · ·Xiℓ})

In which case the mass/scaling dimension correspondence reads:

m(φℓ) = ℓ/L←→ ∆ ∼ ℓ

1We’ll show this soon.
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On the left hand side, this is just the mass of a KK harmonic on a space of size L, i.e. an eigenvalue
of the laplacian on the 5-sphere. On the right hand side, we have an operator made from a product
of l scalar fields. A 4d scalar has engineering dimension 1, so the dimension of the product is l in
the free theory, at least. (It is actually true for all λ by the BPS property.)

The above can be considered as the “highest weight” states. Then, using the fact that the super-
symmetry algebras match on the two sides, we can fill out multiplets on both sides by acting with
the generators. In this way, the correspondence of all SUGRA modes in the N = 4 theory can be
found (an intimidating table can be found in ED’H–DZF, hep-th/0201253, p.50).2

Now consider some observables of a QFT (we’ll assume Euclidean spacetime for the now):

〈O1(x1)O2(x2) · · · On(xn)〉

We can write down a generating functional Z[J ]:

L(x)→ L(x) +
∑

A

JA(x)OA(x) ≡ L(x) + LJ(x)

Z[J ] = 〈e−
R

LJ 〉CFT

where JA(x) are arbitrary functions (sources) and {OA(x)} is some basis of local operators.

The n-point function is then given by:

〈
∏

n

On(xn)〉 =
∏

n

δ

δJn(xn)
ln Z

∣
∣
∣
J=0

Since LJ is a UV perturbation (∵ it is a perturbation on bare Lagrangian by local operators), in
AdS it corresponds to perturbation near the boundary (ds2 = dx2/r2 +dr2/r2, boundary at r = 0).
(Recall from the counting of degree of freedom that QFT with UV cutoff E < 1/δ ←→ AdS cutoff
r > δ.) The perturbation J will be encoded in the boundary condition on bulk fields.

Incidentally, this resolves a huge confusion in GR literature dating back to 1970’s, which claims
that “Cauchy problem3 in AdS is not well-posed.” What happens is that signals can reach from the
surface where initial data is supplied to the boundary in finite time4, and hence boundary condition
is needed for the problem to be well-posed.

The idea (GKPW) for computing Z[J ] is then:

Z[J ] = 〈e−
R

LJ 〉CFT = Zstrings[b.c. depends on J ]
︸ ︷︷ ︸

=???

∼
gs→0

L2/α′→∞

eSSUGRA

∣
∣
EOM, b.c. depend on J

Note that the limit gs → 0, L2/α′ →∞ in AdS corresponds to the limit N →∞, λ→∞ in QFT.

2Note that Tr (X{i1 · · ·Xiℓ}) are chiral (Q̄O = 0) primaries (KO = 0), and hence are short (BPS) multiplets.
The correspondences of long multiplets is another story which we’ll get to soon.

3A Cauchy problem is one in which initial data is specified in some space-like slice, and one is asked to determine
the future evolution of the system.

4We will study the geometry of AdS in detail next week.
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As an example of the application of this formula, one can compute the 3-point function of super-
gravity states. It turns out that the results agree exactly with N = 4 SYM (at leading order in
1/N). A priori this is a surprising statement, since the field theory calculation is done by pertur-
bation theory at small λ = g2

Y MN , while the gravity calculation is meant to work at large λ. This
happens because all the supergravity states correspond to BPS (= ”chiral primary”) operators,
and hence their 3-point functions actually do not depend on λ. This specialness of the states we’ve
been able to map so far may worry you: how do we describe the rest of the field theory operators
using the bulk theory? To approach this question, we take a small detour.

2 Strings from Gauge Fields

There are several long-suspected connection between strings and gauge fields.

2.1 Strings as model of hadrons (late 60’s)

For hadron with largest spin J for a given mass,

J = α′m2(J) + const. “Regge trajectory”

which is precisely the form of the spectrum of the vibration modes of a spinning quantum relativistic
string in R

D.

2.2 Flux tubes in QCD

We know that the gauge field in QCD is in the confined phase (as opposed to the Coulomb phase,
see Fig. 1(a),(b) for illustration). Consequently, the field lines bunch together and behave like a
tensionful flux tube.

More concretely, consider the area law for Wilson loop:

〈Tr Pei
R

�
A〉

?
= e−Area(�)·tension

Here � denotes the worldsheet as shown in Fig. 1(c). This is an order parameter for confinement
and indicates that flux tube has a finite tension if and only if the gauge theory is in the confined
phase.

The above suggests that we may try to use flux tubes as microscopic variables5, which should
behave as strings in R

3,1. However, a result from Polyakov suggests that this is problematic.

Polyakov’s result is this: in quantizing the string worldsheet with metric γαβ, the transformation

γαβ → eφ(σ)γαβ is a gauge symmetry and hence δΓeff

δφ = 0. There is however a conformal anomaly,

5It will turn out that a string description does not require confinement. The loophole is that one may consider
funny shaped worldsheets.
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Figure 1: Flux tubes in QCD: (a) meson in confined phase, (b) ‘meson’ in Coulomb phase, i.e. a
dipole (c) the world sheet of flux tube for computing Wilson loop.

which generates kinetic term of φ in Γeff. Hence φ should be treated as an extra dimension. For QFT
in d ≤ 1, the procedure for quantizing φ is known (“Liouville”), and this is really the correct idea
(this leads to what is sometimes called ‘old matrix models’, including the c = 1 matrix quantum
mechanics). In d = 4 this result (so far) serves as more inspiration for our extra-dimensional
picture..

3 ’t Hooft Counting

The most explicit evidence that gauge theory leads to string theory comes from ’t Hooft counting.

Consider a (any) quantum field theory with matrix fields6 Φb=1,...,N
a=1,...,N̄

(for concreteness we’ll take the

matrix group to be U(N)), and consider a Lagrangian of the form:

L ∼
1

g2
YM

Tr
(
(∂Φ)2 + Φ2 + Φ3 + Φ4 + . . .

)

Rescale Φ = gYMΦ̃,

L ∼ Tr
(

(∂Φ̃)2 + Φ̃2 + gYMΦ̃3 + g2
YMΦ̃4 + . . .

)

Now consider propagators. It is convenient to adopt the double line notation, in which oriented
index lines follow conserved color flow, so that, for propagator7:

〈Φ̃a
b Φ̃

d
c〉 ∝ δa

c δd
b =

a

d

c

c

6By matrix field we mean that their products appear in the Lagrangian only in the form of matrix multiplication,
e.g. (Φ2)c

a = Φb
aΦc

b.
7Had we been considering SU(N), the result would be 〈Φ̃a

b Φ̃d
c 〉 ∝ δa

c δd

b − δa

b δc

d/N2 =

4



And similarly for vertices:

a

b

c

a

b

c

∝ gYM

a a

b

b
cc

d

d

∝ g2
YM

Now consider the ’t Hooft limit in which N → ∞ and gYM → 0 but which λ = g2
YMN = const.

Is this limit classical/free? The answer turns out to be no. The loophole is that even though the
coupling goes to zero, the number of modes diverges.

∝ N2

(a)

b

b

∝ λN2

(b)

b
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b b

bb

∝ λ3N2

(c)

Figure 2: Planer graphs that contribute to the vacuum→vacuum amplitude.

b

b

∝ g2
YMN = λN0

Figure 3: Non-planer graph that contributes to the vacuum→vacuum amplitude.

To see this more concretely, consider vacuum→vacuum diagrams (see Fig. 2 and 3 for illustration).
In Fig. 2 we have a set of planer graphs, whose contributions take the general form λnN2. However,
there are also contributing non-planer graphs, such as the one in Fig. 3, whose contribution does
the take that general form.

Every double-line graph specifics a triangulation of a 2-dimensional surface Σ. There are two ways
to construct the explicit mapping:

Method 1 (“direct surface”) Fill in index loops with little plaquettes.

Method 2 (“dual surface”) (1) draw a vertex in every index loop and (2) draw an edge across
every propagator.

These constructions are illustrated in Fig. 4 and 5.

Comparing the resulting surface and the corresponding contribution, it can be seen that the contri-
bution of a graph with h handles is proportional to N2−2hλn. Thus, the partition function (which
is also the vacuum→vacuum amplitude) must take the form:
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Figure 4: Direct surfaces constructed from the vacuum diagram in (a) Fig. 2a and (b) Fig. 3.

b

b
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∞

∼ S2

Figure 5: Dual surface constructed from the vaccum diagram in Fig. 2c. Note that points at infinity
are identified.

ln Z =

∞∑

h=0

N2−2hfh(λ)

which is exactly like the result from string perturbation expansion.
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