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1 Emergence of Strings from Gauge Theory

Continuing from the previous lecture we substantiate the correspondence between the operators in
N = 4 SYM theory with the excitations of some string theory. We saw that the primary chiral
operators (i.e. primary operators in the conformal field theory which also belong to the short
multiplets of the supersymmetry) correspond to the SUGRA modes but we didn’t discuss what
happens when the operators in the gauge theory are in the long multiplet. Thus consider a more
generic operator (residing in a long supersymmetry multiplet) of the matrix QFT in the large N
limit

O(x) = tr(XXXXY XXY....Y X) (1)

We consider the limit N ≫ J ≫ 1 where J is the number of entities in the above product. Cyclicity
of the trace implies that the structure of the above operator has the symmetry of a closed loop.
In fact the above operator corresponds to creation operator for excited string states with X ′s and
Y ′s the fields living on the worldsheet. Further, in the large J limit, J corresponds to the angular
momentum of the string excitations and in fact this relation could be used to reconstruct the string
theory.

Having sketched the correspondence between the various operators of the SYM guage theory with
SUGRA modes or string excitations, let us organize this knowledge to get a better perspective on
when it could be useful.

• The mass of the SUGRA mode is given by m2
SUGRA = 1/L2

AdS . Using the AdS-CFT corre-
spondence m2

SUGRAL2
AdS = ∆(∆ − 4) where ∆ is the scaling dimension of the corresponding

chiral primary operator in the SYM theory. This implies that ∆SUGRA ∼ N0λ0.

• Moving on to the excited string states m2
string states ∼ 1/α′ ∼

√
λ/L2

AdS where 1/α′ is string

tension. Thus the corresponding scaling dimension equals ∆string states ∼ N0λ1/4.

• Finally, there are D-branes in the string theory which correspond to baryonic states in the
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gauge theory. Their mass is given by 1

m2
D−brane ∼ 1/α′g2

s ∼
√

λ/g2
sL2

AdS ⇒ ∆D−brane = Nλ1/4.

Clearly, the scaling dimension ∆ for the different states (SUGRA, strings, D-branes) has distinctive
dependence on N and λ. This hierarchy of ∆’s is what a QFT needs to have a weakly coupled gravity

description without strings. For example the λ → ∞ limit removes all states except SUGRA modes.2

There are various forms of AdS-CFT conjecture. For example, one may believe that it only holds
in the limit λ → ∞, N → ∞ (yielding classical gravity) or perhaps also at finite λ and N → ∞
limit (when one obtains classical strings on small AdS radius). Remarkably, all evidence till date
points to a much stronger statement that it holds for all N and all λ.

2 Conformal Symmetry in QFT

This is a worthy subject in itself and study of conformal invariance is relevant for understanding
both UV and IR limit of various QFT’s and also for the worldsheet theory of the strings in the
conformal gauge. As you may already know (and we recapitulate it below) that conformal symmetry
in two dimensions is very special due to existence of infinite number of conserved currents. Therefore
it pays to understand which aspects of a conformal field theory (CFT) are particular to D = 2
and which apply to any dimension D > 2. We have already seen some of the constraints due to
the requirements of Lorentz invariance and SUSY on the QFT’s and expectedly, requirement of
conformal invariance makes it even more constrained. This is also the last stop in our ruthless
program to evade the loopholes in the Coleman-Mandula theorem.

Some of the useful references are the book Conformal Field theory by Di Francesco, Mathieu and
Senechal and the articles by Callan, Ginsparg and portions of MAGOO (links posted on the course
webpage).

2.1 The Conformal Group

We define CFT by a list of operators and their Green functions which satisfy certain constraints
described below. Succintly, a CFT is a theory with symmetries generated by conformal group .
Obviously, it behooves us to define conformal group which we do now. Please note that the route
we follow is not a good one for non-relativistic CFT’s.

1The power of λ here depends on the specific geometry of the D-brane in question, i.e. which of the dimensions

of the bulk the D-brane is wrapping.
2It is worth noting here that gauge theories in general also contain non-local operators such as Wilson loops:

tr Pe
i

R

C
A

where C is some closed curve in the space on which the field theory lives. It can be thought of as the phase acquired

by a charged particle dragged along the specified path by an arbitrarily powerful external force. The connection

between these operators and strings turns out to be quite direct, as one might expect from the relationship between

charges on D-branes and the ends of open strings.
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Recall that isometry group of a spacetime with coordinates xµ and metric gµν is the set of coordinate
transformations which leave the metric ds2 = gµνdxµdxν unchanged. Conformal group corresponds
to a bigger set of transformations which preserve the metric up to an overall (possibly position-
dependent) rescaling: ds2 → Ω(x)ds2. Thus Poincare group (which is the group of isometries of
flat spacetime) is a subgroup of the conformal group with Ω(x) = 1. Conformal transformations
could also be seen as the successive application of a coordinate transformation x → x′, gµν → g′µν

which preserve ds2 = gµνdxµdxν followed by a Weyl rescaling which takes x′ → x so that ds2 is not

preserved.

Conformal transformations preserve the angles between vectors, hence the name:

cos(θ) =
vµwµ√

vµvµ
√

wµwµ
→ cos(θ′) (2)

Consider the space-time IRp,q with a constant metric gµν = ηµν and let’s look at the piece of
infinitesimal coordinate transformations connected to the identity:

xµ → xµ + ǫµ(x) (3)

gµν → ηµν − (∂µǫν + ∂νǫµ) (4)

Note that above there are no terms with derivative(s) of metric since the metric is constant. The
requirement of conformal invariance implies that

(∂µǫν + ∂νǫµ) = f(x)ηµν (5)

=
2

d
∂ρǫ

ρ ηµν (6)

where the equality f(x) = 2
d ∂ρǫ

ρ is obtained by taking trace of ∂µǫν on both sides of the eqn. 5.
Applying an extra derivative ∂ρ on 5 gives

�ǫν + (1 − 2

d
)∂ν(∂ρǫ

ρ) = 0 (7)

Pausing for a moment, we note that d = 2 is clearly special since �ǫν = 0 implies that any

holomorphic (antiholomorphic) function ǫ(z) (ǫ(z̄)) of complex coordinates z = x1 + ix2 would
correspond to a conformal transformation. A little more thought leads to the result that conformal
algebra is infinite dimensional in two dimensions. Applying one more partial derivative ∂µ on this
equation and applying � on eqn. 5 and using the both equations thus obtained together gives

(2 − d)∂µ∂ν∂ρǫ
ρ = �∂ρǫ

ρηµν (8)
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Contracting with ηµν implies �∂ρǫ
ρ = 0 = ∂µ∂ν∂ρǫ

ρ and thus ǫµ(x) is at most a quadratic function
of x.

Let’s organize ǫµ(x) by its degree in x:

• Degree zero:

Translation : ǫµ(x) = aµ (9)

• Degree one:

Rotation : ǫµ(x) = ωµ
ν xν with ωµν = −ωµν (10)

Dilatation : ǫµ(x) = λxµ (11)

• Degree two:

Special Conformal : ǫµ(x) = bµ~x.~x − xµ~b.~x (12)

The corresponding generators for the above transformations can now be immediately written down:

Translation : Pµ = −i∂µ (13)

Rotation : Mµν = i(xµ∂ν − xν∂µ) (14)

Dilatation : D = ixµ∂µ (15)

Special Conformal : Cµ = −i(~x.~x∂µ − 2xµ~x.~∂) (16)

The commutation relations for the above generators are obtained as:

[Pρ,Mµν ] = i(ηρµPν − ηρνPµ) (17)

[Cρ,Mµν ] = i(ηρµCν − ηρνCµ) (18)

[D,Mµν ] = 0 (19)

[Mµν ,Mρσ ] = (ηνρMµρ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (20)

[D,Pµ] = iPµ (21)

[D,Cµ] = −iCµ (22)

[Cµ, Pν ] = 2i(ηµνD − Mµν) (23)

The first four equations mean that Pµ and Cµ transform as vectors under Lorentz transformations
while D is a scalar and Mµν is a rank-2 tensor. The next two equations mean that Pµ and Cµ act
as raising and lowering operator for the eigenvectors of dilation operator D.
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Interestingly, recombining conformal generators in suitable way reveals the very important and
remarkable result that the conformal group in IRp,q is isomorphic to SO(p + 1, q + 1)!. First we
do simple counting to check that the number of generators match correctly. The total number of
generators of conformal group in d(= p + q) dimensions are d (translation) +d(d + 1)/2 (rotation)
+d (special conformal) +1 (dilatation) which sum up correctly to (d + 1)(d + 2)/2, the number of
generators for SO(p + 1, q + 1). To see the exact correspondence, define the following generators:

Jµ ν = Mµν (24)

Jµ d =
1

2
(Pµ − Cµ) (25)

Jµ d+1 =
1

2
(Pµ + Cµ) (26)

Jd+1 d = D (27)

where µ ∈ {0, 1, ...d − 1}. These new generators follow the SO(p + 1, q +1) commutation relations:

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (28)

where a, b, c, d ∈ {0, 1, ...d + 1}. Since the conformal algebra closes, it is possible to exponentiate
the infinitesimal transformations to obtain finite ones:

Translation : x → x′µ = xµ + aµ, Ω(x) = 1 (29)

Lorentz : x → x′µ = Λµ
νx

ν , Ω(x) = 1 (30)

Dilatation : x → x′µ = λxµ, Ω(x) =
1

λ2
(31)

Special conformal : x → x′µ =
xµ + bµ~x.~x

1 + 2~b.~x +~b.~b ~x.~x
, Ω(x) = (1 + 2~b.~x +~b.~b ~x.~x)2 (32)

The last transformation (‘special conformal’) may not seem very easy to visualize. One simpler
way to rewrite its finite form is

x′µ

~x′.~x′

=
xµ

~x.~x
+ bµ (33)

That is, it is nothing but a inversion followed by a translation followed again by inversion. As an
aside, an alternative definition of the conformal group is that it is the smallest group which contains
both Poincare and inversion operations.
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2.2 Representation Theory

In a general QFT one is dealing with a large set of fields, their derivatives and products and it is
difficult to organize various fields/operators. However in a CFT i.e. in a conformally invariant QFT
there is a systematic way to organize various operators. Namely, we first diagonalize the dilatation
operator D and label the various operators by the their eigenvalues ∆ when being acted upon by
D. Note that D commutes with Mµν and hence we can still specify representations of the Lorentz
algebra.

Considering a spinless field for simplicity, under a dilatation

φ(x) → φ(x′) = λ∆φ(0) (34)

which implies

[D,φ(0)] = −i∆φ(0) (35)

of special interest is a conformal primary operator transforms under conformal transformations
as:

φ(x) →
∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

∆/d

φ′(x′) (36)

where
∣

∣

∣

∂x′

∂x

∣

∣

∣
is the Jacobian of the conformal transformation of the coordinates which is related to

the scale factor Ω by

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

= Ω−d/2 (37)

One must note that not every field transforms this way even if it has definite scaling dimension.

It turns out that the unitary representations of conformal algebra always have a lowest ∆ whose
value is determined by the dimension of the spin. Physically this makes sense since correlators
〈φ(x)φ(0)〉 of the fields are not expected to diverge as |x| → ∞. Readers familiar with state-
operator correspondence (to be discussed in the following lecture(s)) may note that this could also
be seen as a consequence of the fact that the spectrum of any unitary theory is bounded from
below.

Since Cµ acts as a lowering operator for the scaling dimension (eqn. 22) , it annihilates the
state φlowest ∆. This operator of lowest ∆ can be seen to be conformal primary according to the
definition above (the Callan article does this somewhat explicitly). Now the strategy for organizing
the whole spectrum of operators might be obvious: we label the various representations of the CFT
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by φlowest ∆ and build the complete multiplet by acting with Pµ which acts as raising operator for
scaling dimension ∆ (eqn. 21) .

As a final remark for this lecture: please note that in general primary operators are not eigen-
functions of the Hamiltonian H since the dilatation operator doesn’t commute with H. As a
consequence pµpµ which is the Casimir of the Poincare group is not Casimir of the full conformal
group.
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