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In this session, we are going to talk about the following topics.

1. We are making a few comments about CFT.

2. We are discussing spheres and hyperboloids.

3. Finally we are focusing on Lorentzian AdS and its boundary.

1 Conformal Symmetry

1.1 Weyl anomaly

Quantumly, conformal symmetry in a curved space (with even number of dimensions) could be
anomalous, that is ds2 → Ω(x)ds2 could be no longer a symmetry of the full quantum theory. This
anomaly can be evaluated from the following diagram with operator T µ

µ inserted at the left vertex.

Figure 1: A contribution to the Weyl anomaly.

The conformal anomaly signals a nonzero value for the trace of the energy-momentum tensor. In
a curved spacetime, it is related to the curvature:

T µ
µ ∼ RD/2
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where R denotes some scalar contractions of curvature tensors and D is the number of spacetime
dimensions; the power is determined by dimensional analysis.

For the special case of D = 2, this is

T µ
µ = −

c

12
R(2) (1)

where R(2) is the Ricci scalar in two dimensions and c is the central charge of the Virasoro algebra
of the 2d CFT. Also in D = 4, the anomaly is given by T µ

µ = aW + cGB where W and B are
defined as

W = (Weyl tensor)2 = R....R.... − 2R..R.. +
1

3
R2 (2)

GB = Euler density = R....R.... − 4R..R.. + R2; (3)

The Gauss-Bonnet tensor is the ‘Euler density’ in the sense that
∫

M

GB = χ(M) =
∑

(−1)pbp(M)

where χ(M) is the Euler character of M. c and a are “central charges” which are proportional to
the number of degrees of freedom of CFT.

In D = 2 the central charge can be defined even away from critical theories as follows:

c = lim
z→0

z4〈T (z)T (0)〉. (4)

The Zamolodchikov c-theorem says that this quantity is equal to the c defined above when eval-
uated at a RG fixed point, and is monotonically decreasing under RG flow. In four dimensions,
a longstanding conjecture of Cardy suggests that a should decrease under RG flow, but there are
now some counterexamples 1.

1.2 OPE

Any local QFT has an Operator Product Exansion (OPE). The idea is that any local disturbance is
created by local operators. Consider some correlation function of local operators 〈

∏
Oi(xi)〉; focus

on one local operator O1(x) inserted at point x and there is another one O2(y) at y. Consider
an imaginary line around them and suppose that |x − y| < ǫ which is their distance from nearby
operators. Then we can squint the local disturbance by a superposition of local operators

O1(x1)O2(x2) =
∑

n, all operators with same quantum numbers

cn
12On(y) (5)

The coefficients are independent of the other operators in the correlator. The coefficients are in
general hard to know. In a CFT, we can plug (5) into a three-point function and we find that the
OPE coefficients are determined to be

cn
12(x − y) =

cn
12

|x − y|∆1+∆2−∆n

(6)

where cn
12 are proportional to the 3-point interaction coefficient.

1Shapere and Tachikawa, 0809.3238
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1.3 Conformal Dimensions

Let’s give a few examples of operators with definite conformal dimension:

a) Energy-momentum tensor: The conformal dimension is ∆ = D which is guaranteed by di-
mensional analysis. The energy-momentum tensor must be coupled to gµν by definition, and the
metric components are dimensionless. There are other more algebraic arguments for this (use the
Conformal Ward identities to constrain the OPE of the stress tensor with itself).

b) For a global symmetry, there is a conserved current jµ which has ∆ = D−1. The current can be
coupled to a gauge field in which case these is a gauge invariance that guarantees the conservation
of the current, that is ∂µjµ = 0, and fixes the dimension.

In general, the conformal dimensions are very hard to know, however there are some lower bounds on
them in unitary CFTs. The lower bound constrains the possible values of the conformal dimension
according to their spins. A few examples of this is as follows (for a full analysis see hep-th/9712074)

∆scalar operator ≥
D − 2

2
= free field dimension

∆spin 1/2 operaor ≥
D − 1

2
= free field dimension

∆spin 1 ≥ D − 1 = conserved current dimension

In the last equation, spin 1 is meant to be in (1
2 , 1

2) representation as opposed to (1, 0).

1.4 Thermodynamics of a CFT

As a last remark on CFT we discuss the thermodynamics of a CFT. The partition function is
defined as

ZCFT = TrCFT (exp(−H/T )) .

In the thermodynamic limit, ln Z is proportional to the volume of the space. ln Z is a dimensionless
quantity. Hence, we must have ln Z ∼ V T d (d is the number of spatial dimensions) in the absence
of any other energy scales (such as a chemical potential for some conserved charge). The free energy
then will be

F = −T lnZ = cV T d+1.

where this c is also somehow proportional to the number of degrees of freedom of CFT.

Exploiting simple facts about CFT we can derive some interesting results. We must regard T µ
µ = 0

as an operator equation in the full quantum theory. So we might be tempted to put it inside
Tr(e−H/T ). The operator equation then translates into the following equation

0 = Tr(T µ
µ e−H/T ) = 〈T00〉 − 〈Tii〉 = E − dP.

This last relation gives the speed of the sound

cs =

√
(

∂P

∂E

)

S

=

√

1

d
(7)
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2 Sphere, Hyperboloid and AdS

The AdS space has a constant negative curvature. It is actually the most symmetrical space with
a negative curvature. The most symmetric (Euclidean) space with a positive curvature is obviously
a sphere. A useful and immediate description of spheres and their metrics arises by embedding in
a higher dimensional space. Below we will use the same logic to investigate the AdS space, but as
a warmup we start with a sphere

Sd = {

d+1∑

i=1

x2
i = L2} ⊂ IRn (8)

with the flat metric ds2 =
∑d+1

i=1 dx2
i . Note that the defining equation of the manifold respects the

symmetries of the ambient space. That is, under the transformation xi → Λ j
i xj for Λ ⊂ SO(d+1),

the manifold will be mapped to itself. In other words, the embedding is “isometric”.

We can solve equation (8) to find a set of global coordinates. In two dimensions, for example, we
find the familiar spherical coordinates

x1 = L cos θ cos φ,

x2 = L cos θ sinφ,

x3 = L sin θ

The metric then would look like

ds2
S2 = L2(dθ2 + cos2 θdφ2).

2.1 Euclidean AdS = hyperbolic space

Our next goal is to describe the (Euclidean) hyperbolic space in a higher dimensional space. In
three dimensions this is like the familiar hyperboloid defined as

{x2 − y2 − z2 = R2} ⊂ IR3, ds2 = dx2 + dy2 + dz2 (9)

However, it will more useful to embed hyberbolic space in Minkowski space; this is because the
locus (9) doesn’t respect the SO(3) symmetries of the ambient IR3 metric. So instead, we define
d-dimensional hyperbolic space to be the locus

Hd = {−X2
d+1 +

d∑

i=1

X2
i = −L2} ⊂ IRd,1 (10)

with the metric given by

ds2 = −dX2
d+1 +

d∑

i=1

dX2
i
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The manifold defined by equation (10) has two disconnected branches with Xd+1 ≥ 1 and Xd+1 ≤
−1. Here we will only consider the connected subspace with Xd+1 ≥ 1. We can easily see that this
space is spacelike. The argument goes as follows. Define vector vA = (xd+1, ~x). This is a timelike
vector for any x ∈ Hd, for (vA)2 = −L2. suppose that δvA is the tangent vector to Hd at (xd+1, ~x).
Therefor we have

(vA + δvA)2 = −L2 ⇔ vA.δvA = 0

which means that δvA is spacelike (otherwise we have two timelike orthogonal vectors).

Note that the induced metric on Hd will manifestly preserve the SO(d, 1) symmetry of the ambient
Minkowski space. This space is actually homogenous, in the sense that any point can be mapped
to any other by an SO(d, 1) transformation.

In this case, we can choose the set of global coordinates as

xd+1 = L cosh ρ,

xi = L sinh ρ Ωi,
d∑

i=1

Ωi
2 = 1.

Using
∑

Ωi
2 = 1 and thus ΩidΩi = 0, we find the induced metric on the hyperbolic space

ds2 = L2(dρ2 + sinh2 ρ
∑

dΩi
2) = L2(dρ2 + sinh2 ρdΩ2

p)

where dΩ2
p is the round metric on the unit p-sphere.

We can also define the following coordinates which conformally compactify the space (i.e. map the
infinite coordinate range of ρ to a finite range in the new coordinate). Define dΘ = dρ

sinh ρ from
which we find that tan(Θ/2) = tanh(ρ/2). The metric then would take the following form

ds2 = L2(dΘ2 + tan2(Θ/2)dΩ2)(cosh2 ρ)

Figure 2: Poincare disk.

This space is called Poincaré disk and it is topologically a ball whose boundary is ∂H = Sd−1. The
distance from some point in the interior to the boundary is infinite.
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Let’s also define the following subset of the manifold

S(ρ̄) = {p ∈ H, ρ(p) < ρ̄}.

The curious fact is that

lim
ρ→∞

Area(S(ρ))

Volume(S(ρ))
∼

1

L
.

We can also define the following coordinates (UHP coordinates). Let’s define

u = Xd − Xd+1, v = Xd + Xd+1.

The equation (10) then becomes

−L2 = −X2
d+1 + X2

d +

d−1∑

i=1

X2
i = uv +

∑
~X2,

The ambient metric also becomes
ds2 = dudv + d ~X2.

Figure 3: The Poincaré plane in the global coordinates and in the Upper Half Plane coordinates.

We can now solve for a variable, say v, in the previous equations. Let’s also redefine ~X as ~x =
~X
u L.

The metric in these new coordinates is

ds2|Hd
= dudv + d~x2 = L2 du2

u2
+

u2d~x2

L2
(11)

= L2

(
dz2 + d~x2

z2

)

(12)

where in the last line, we introduced the new variable z = R2/u. Note that z > 0. These last
coordinates define the Poincaré Upper Half Plane (UHP).
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2.2 Lorentzian AdS

Now we are in a position to focus on the problem which is really of our interest. This is the
Lorentzian AdSp+2. Let’s first define the signature that we will need in this case. The embedding
space is Rp+1,2 with metric ηab = diag(−+ + · · ·+

︸ ︷︷ ︸

p+1′s

−). The metric is then

ds2 = −dx2
0 + d~x2

︸︷︷︸

a p + 1 vector

−dx2
p+2 (two times!)

The AdS space is then defined as

{ηabX
aXb = −L2} ⊂ IRp+1,2 (13)

Despite the appearance of two times in the definitions, this space has really only one time direction.
The argument is the same as above. (Note that the vector orthogonal to the AdS in IRp+1,2 is
timelike).

The symmetries of the AdS space is apparent from equation (13). It has a SO(p + 1, 2) symmetry
and it is also homogenous. Let’s define the following set of coordinates (called global coordinates)

X0 = L cosh ρ cos τ,

Xi = L sinh ρ Ωi,

Xp+2 = L cosh ρ sin τ

where
∑p+1

i=1 Ω2
i = 1. In these coordinates, the metric becomes

ds2 = L2[− cosh2 ρdτ2 + dρ2 + sinh2 ρ dΩ2
p

︸︷︷︸

SO(p+1)

]

This metric has a visible SO(2) isometry under which τ goes to τ + a. However τ is supposed to
be the time direction. Near ρ = 0, for example, the spacetime looks like

S1
︸︷︷︸

timelike

×IRp+1

So in order to avoid closed timelike curves and to make any sense of the theory, we should unwrap

τ , that is, we should instead use the covering space of the manifold that doesn’t identify τ and
τ + 2π.
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Figure 4: AdSp+2 is realized as a hypeboloid in IRp+1,2

8


