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Topics for this lecture

• Find φ[φ0](x) by Green functions in x-space (efficient)

• Compute 〈OO〉, counter terms

• Redo in p-space (general)

References

• Witten, hep-th/9802150

• GKP, hep-th/9802109

Solving Wave Equation I (Witten’s method)

Let’s study the wave equation in AdS in some detail. This first method uses a trick by Witten
which is efficient but slightly obscure.

If we know “bulk-to-boundary” Green’s function K regular in the bulk, such that

(−� +m2)Kp(z, x) = 0 (1)
Kp(z, x)→ ε∆−δDε (x− p), z → ε (2)

where p is some point on the boundary,
then the field in the bulk

φ[φ0](z, x) =
∫
dDx′ φRen

0 (x′)Kx′(z, x)→ z∆−φRen
0 (x)

solves (1).
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Euclidean AdS

Recall the metric on AdS with curvature scale L in the upper half plane coordinates:

ds2 = L2dz
2 + dx2

z2

Now here comes some fancy tricks, thanks to Ed:

Trick (1): Pick p = “point at∞”. This implies that the Green’s function K∞(z, x) is x-independent.

The wave equation at k = 0:

0 =
[
−zD+1∂zz

−D+1∂t +m2
]
K∞(z)

can easily be solved. The solution is power law (recall that in the general-k wave equation, it was
the terms proportional to k2 that ruined the power-law behavior away from the boundary)

K∞(z) = c+z
∆+ + c−z

∆−

We can eliminate one of the constants: c− = 0, whose justification will come with the result.

Trick (2): Use AdS isometries to map p = ∞ to finite x. Let xA = (xµ, z), take xA → (x′)A =
xA/(xBxB). The inversion of this mapping is:

I :

{
xµ → xµ

z2+x2

z → z
z2+x2

Claim: I

A) is an isometry of AdS (also Minkowski version, see pset 4)

B) is not connected to 1 in SO(D,2)

C) maps p =∞ to x = 0, i.e., I : K∞(z, x)→ K∞(z′, x′) = K0(z, x) = c+z
∆+/(z2 + x2)∆+ .

Some notes:

(i) That this solves the wave equation (1) as neccessary can be checked directly.

(ii) The Green’s function is

Kx′(z, x) = c+
z∆+

(z2 + (x− x′)2)∆+
≡ K(z, x;x′)

(iii) The limit of the Green’s function as z → 0 , i.e. the boundary is

K(z, x;x′)→

{
cz∆+ → 0, if x 6= x′

cz−∆+ →∞, if x = x′
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(recall that ∆+ > 0 for any D,m). More specifically, the Green’s function approaches a delta
function:

K(z, x;x′)→ const · ε∆−δD(x− x′).

Clearly it has support only near x = x′, but to check this claim we need to show that it has finite
measure: ∫

dDx ε−∆−K0(ε, x) =
∫
dDx

cε∆+−∆−

(ε2 + x2)∆+

=
cεDε2∆+−D

ε2∆+

∫
dDx̄

1
(1 + x̄2)∆+

= c
π
D
2 Γ(∆+ − D

2 )
Γ(∆+)

.

We will choose the constant c to set this last expression equal to one. Hence,

φ[φ0](z, x) =
∫
dDx′Kx′(z, x)φRen

0 (x′)

=
∫
dDx′c

x∆+

(z2 + (x− x′)2)∆+
φRen

0 (x′) ;

this solves (1) and approaches ε∆−φRen
0 (x) as z → ε.

The action is related to expectation values of operators on the boundary:

S
[
φ[φ0]

]
= − ln〈e−

R
φ0O〉

= −η
2

∫
∂AdS

√
γ φn · ∂φ

= −η
2

∫
dDx
√
g gzzφ(z, x)∂zφ(z, x)

∣∣∣
z=ε

= −η
2

∫
dDx1d

Dx2 φ
Ren
0 (x1)φRen

0 (x2)Fε(x1, x2)

where the “flux factor” is

Fε(x1, x2) ≡
∫
dDx

K(z, x;x1)z∂zK(z, x;x2)
zD

∣∣∣
z=ε

.

The boundary behavior of K is:

K∆+(z, x;x′)
∣∣∣
z=ε

= ε∆−
(
δDε (x− x′) +O(ε2)

)
+ ε∆+

(
c

(x− x′)2∆−
+O(ε2)

)
the first terms sets: c−1 = π

D
2 Γ(∆+ − D

2 )/Γ(∆+), the second term is subleading in z.

z∂zK(z, x;x′)
∣∣∣
z=ε

= ∆+ε
∆−δ(x− x′) + ∆+cz

∆+
1

(x− x′)2∆+
+ . . .

Ok, now for the 2-point correlation function on the boundary:

G2(x1, x2) ≡ 〈O(x1)O(x2)〉c =
δ

δφ0(x1)
δ

δφ0(x2)

(
−S

[
φ[φ0]

])
= ηFε(x1, x2).
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We must be careful when evaluating the cases x1 6= x2 and x1 = x2, which we do in turn.

Firstly, if x1 6= x2:

G2(x1 6= x2) =
η

2

∫
z=ε

dDxz−D
(
z∆−δD(x− x1) +O(z2)

)(
(ignore byx1 6= x2) +

∆+cz
∆+

(x1 − x2)2∆+
+O(z2)

)
=

η

2
c∆+ε

−D+∆−+∆+
1

(x1 − x2)2∆+
+O(ε2)

=
ηc∆+

2(x1 − x2)2∆+
.

Good. This is the correct form for a two point function of a conformal primary of dimension ∆+

in a CFT; this is a check on the prescription.

Secondly, if x1 = x2:

G2(x1, x2) = η

(
∆−ε2∆−−DδD(x1 − x2) +

c∆+

(x1 − x2)2∆+
+ ∆+c

2ε2∆+−D
∫
dDx

1
(x− x1)2∆+(x− x2)2∆+

)
As ε → 0, the first term is divergent, the second term is finite, and the third term vanishes. The
first term is called a “divergent contact term”. It is scheme-dependent and useless.

Remedy: Holographic Renormalization. Add to Sgeometry the contact term

∆S = Sc.t. =
η

2

∫
bdy

dDx
(
−∆−ε2∆−−D (φRen

0 (x))2
)

= −∆−
η

2

∫
∂AdS,z=ε

√
γ φ2(z, x).

Note that this doesn’t affect the equations of motion. Nor does it affect G2(x1 6= x2).

Solving Wave Equation II (k-space)

Since the previous approach isn’t always available (for example if there is a black hole in the
spacetime), let’s redo the calculation in k-space.

Return to wave equation

0 =
[
zD+1∂z

(
z−D+1∂z

)
−m2L2 − z2k2

]
fk(z)

with k2 = −ω2 + k2 > 0. The solution is

fk(z) = AKz
D
2 Kν(kz) +AIz

D
2 Iν(kz),

with ν =
√

(D/2)2 +m2L2 = ∆+ − D/2. Assume k ∈ R (real time issues later). As z → ∞:
Kν ∼ e−kz and Iν ∼ ekz. The latter is not okay, so AI = 0.
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At boundary:

Kν(n) ∼ n−ν
(
a0 + a1n

2 + a2n
4 + . . .

)
+

{
nν(b0 + b1n

2 + b2n
4 + . . .), ν /∈ R

nν lnn (b0 + b1n
2 + b2n

4 + . . .), ν ∈ R

Hence

fk(z) = AKz
D/2Kν(kz) ∼ z

D
2
±ν = z∆± , as z → 0.

5


