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• Pointlike probes of the bulk - Geometric optics through D-branes.

• Baryons and Branes

– Baryon vertices in N = 4 SU(N) gauge theory

– Giant gravitons

• Survey of other examples of the correspondence

1 Geometric Optics via D-Branes

Last time we observed that one could compute observables associated to k-dimensional submanifolds

C ⊂ ∂AdS by studying exp

(

− Extremum
∂Σ=C,Σk+1⊂AdS

Vol(Σ)

)

in analogy with Wilson lines.

The simplest example is the case k = 0, when C is a discrete point set. This would lead us
to consider one-dimensional curves in AdS. This one dimensional curve is the worldline of some
point particle excitation in AdS. Let C = {−a,+a} be the discrete point set and Σ denote a
curve parametrized as z(τ) with z(τ = 0) = −a and z(τ = 1) = +a as shown in Figure 1. The
observable associated with C is clearly the two point function of some local operator O. This local
operator “couples” to a scalar field of mass m in the gravity theory. The usual prescription involves
computing the two point function in the bulk and finding the on-shell action. Since we have a free

scalar field, we can instead use a “first quantized” approach. The action for a point particle of
mass m whose world-line is Σ is given by S[z] = m

∫

Σ ds. The two point function for this particle
〈z(τ = 0)z(τ = 1)〉 is given by the Feynman path integral Z[±a] =

∫

[dz(τ)] exp(−S[z]|10). In the
limit of large m, we have

Z[±a] ∼ exp(−S[z]) (1)

where we have used the saddle point approximation. z is the geodesic connecting the points ±a on
the boundary.
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Figure 1: The curve Σ ⊂ AdS connecting the two points in C. The arrows on the curve indicate
the orientation.

We now compute Z[±a] in the saddle point approximation. The metric restricted to Σ is given by

ds2|Σ = L2

z2 (1 + z′2)(dτ)2, where z′ := dz/dτ . This implies the action is

S[z] =

∫

dτ
L

z

√

1 + z′2 (2)

The geodesic can be computed easily by noting that the action S[z] does not depend on τ explicitly.
This implies we have a conserved quantity

h = z′
∂L
∂z′

−L =
L

z

1√
1 + z′2

(3)

⇒ z′2 =

(

L2

h2
− z2

)

1

z2
(4)

The above is a first order differential equation with solution τ =
√

z2
max − z2, with z(τ = 0) =

zmax = L/h = a. This is the equation of a semi-circle. Substituting the solution back into the
action gives

S[z] =

∫

dτ
L

z

√

1 + z′2 = 2L

∫ a

ε

dz√
a2 − z2

a

z
(5)

= 2L log
2a

ε
+ (terms → 0 as ε → 0) (6)

Recall that the expectation value of a circular Wilson loop of radius a was independent of a. We
argued that since we are computing this in a conformal field theory, the only scale in the problem
is a and therefore the expectation value of the Wilson loop should be independent of a. This
argument fails in the case at hand because there are two scales: a and ε. The scale transformation
is anomalous and this is manifested in the ε dependence of S[z].

According to the GKPW prescription, the generating functional Z[±a] with the prescribed bound-
ary conditions corresponds to the two point function 〈O(+a)Ō(−a)〉. The saddle point approxima-
tion of large m corresponds to large ∆ in the CFT. Therefore

〈O(+a)Ō(−a)〉 ∼ Z[±a] ∼ exp(−S[z]) ∼ 1

a2mL
(7)

This is exactly what we expect for the two point function, since m2L2 = ∆(∆−D) ≈ ∆2 in the large
∆ limit. Without this anomaly, the two point function of the operator O would be independent of
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Figure 2: N F-strings ending on a D5 brane at the origin ρ = 0 in global coordinates of AdS5. The
orientation of the strings is indicated with an arrow.

a forcing ∆ = 0, which is impossible in a unitary CFT. This is similar to the anomaly that gives a
non-zero scaling dimension of k2/4 to the operator exp(ikX) for the 2d free boson CFT which has
classical scaling dimension 0. Graham and Witten [1] showed that such a scale anomaly exists for
surface observables for any even k. This relation between correlators of large ∆ observables and
geodesics in the bulk theory offers a probe of the bulk spacetime [2].

2 Baryons and branes

In the previous section, we considered a very heavy point particle excitation in the bulk theory.
The question that naturally arises is - Who are these heavy objects? A good candidate would
be the D0 brane which is extremely heavy at weak coupling, but in Type IIB there are no BPS
D0 branes. This is because the IIB theory has only even form RR potentials. In the absence of a
conserved charge, this object would decay into a puff of closed string states. The next best thing we
could consider are Dq branes wrapping q-cycles of S5. The only closed cycles on S5 are the 0-cycle
and the 5-cycle. This leaves us with only one choice - the D5 brane wrapping the S 5. This would
correspond to a point particle in AdS5. The tension of the D5 brane is T5 = 1/(gsl

6
s). Naively, one

would expect that the wrapped D5 brane would have a mass T5Vol(S5) ∼ L5/(gsl
6
s) ∼ Nλ3/2/L.

However, this turns out to be incorrect.

Recall (from Problem Set 1) that the action of the D5 brane includes the term

SD5 ⊃
∫

M6

Fwv ∧ C(4) = −
∫

M6

Awv ∧ F (5) (8)

where M 6 is the worldvolume of the D5 brane which happens to be S5 × worldline in AdS5. The
subscript wv indicates that the fields live on the worldvolume of the D5 brane. There are N units
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Figure 3: Electric dipole moving in a magnetic field.

of five form flux threading the S5 that stabilize its volume. This implies that

SD5 ⊃ −N

∫

Worldline
Awv (9)

The worldvolume gauge field has N negative point charge sources induced by the five-form flux.
Since the space S5 is compact, this implies that we must have N positive point charge sources.
Recall that the fundamental string that ends on a D-brane is electrically charged under the world-
volume gauge field. Thus, we can cancel the net charge by attaching N F-strings to the D5 brane.
Since these F-strings can’t end anywhere, they extend all the way to infinity. Figure 2 illustrates
this state in global coordinates.

The attached strings have a mass N/(α′) ×
∫

dz/z2 which is infinite and proportional to N . This
object is not a dynamical point particle in IIB gravity theory on AdS5 since it is infinitely massive.
It does not “couple” to a finite ∆ operator in the CFT. Recall from or discussion of Wilson loops
that strings which extend all the way to the boundary of AdS correspond to infinitely massive quarks
transforming in the fundamental of SU(N) in the CFT1. Thus, the D5 brane with N fundamental
strings going off to infinity couples to a “baryon vertex” between N heavy, external quarks.

We can regulate the mass by considering a probe D3 brane at a finite radial position. The heavy
quarks in the gauge theory have finite mass proportional to the radial position. This is completely
analogous to what we did for the case of the Wilson loop. Now, we turn to perturbative string
theory and compute the ground state for strings stretched between the D5 and D3 brane. The
worldvolume of the D5 brane is S5 × R and the worldvolume of the D3 brane is S3 × R. Consider
an open string stretching from the D5 brane (left end) to the D3 brane (right end). In quantizing
the open string the boundary conditions for each coordinate are either Dirichlet-Dirichlet (DD),
Neumann-Neumann (NN) or mixed (ND). The number of coordinates with ND boundary conditions
is 8 for teh 5-3 string. This implies that there is a fermionic massless ground state (See Polchinski
II, section 13.4). This implies that the baryon vertex is antisymmetric under exchange of heavy
quark fields.
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Figure 4: A D3 brane wrapping a 3-sphere inside a 5-sphere. Drawn above is the case of a 0-sphere
X2

3 = r2 at a polar angle φ, embedded in a 2-sphere X2
1 + X2

2 + X2
3 = L2.

3 Giant Gravitons[3]

Consider an electric dipole consisting of charges +q and −q connected by a spring happily moving
with a velocity v in a magnetic field B as shown in Figure 3. The forces acting on the dipole are
the Lorentz force and the force exerted by the spring. The equation of motion is

m∆̈ = −k∆ + qvB (10)

These forces oppose each other producing an equilibrium where the dipole has length ∆ = qvB/k.
We can imagine the dipole moving on the surface of a two-sphere with a magnetic monopole at the
origin producing the magnetic field.

Now, consider a D3 brane wrapping an S3 inside an S5. We define the 5-sphere as the locus
∑6

i=1 X2
i = L2. A 3-sphere of radius r inside the S5 is specified by two equations - X2

3 +X2
4 +X2

5 +
X2

6 = r2 and X1+iX2 =
√

L2 − r2eiφ. This setup is shown in Figure 4 using a 0-sphere (two points)
inside an S2. The S3 is a contractible cycle in the S5 and since the D3 brane has a tension, the
minimum energy configuration is a 3-sphere of radius zero. A spherical D3 brane is neutral under
the RR 4-form. To see this consider two differential volume elements diametrically opposite on the
3-sphere. These two elements will trace out world-volumes with opposite orientations. Although
each of these elements individually is charged under the 4-form, the total charge is zero. However,
the D3 brane does have a dipole moment and if it moves in a “magnetic field”, the magnetic force
would counter the force due to the tension and stabilize the volume of the S 3.

Consider the D3 brane shown in Figure 4 moving along the φ direction with a velocity φ̇. To write
down the DBI term, we first write the metric on the S5 considered as a two parameter family of

1We take the gauge group as SU(N) and not U(N). The U(1) factor in the CFT gauge group corresponds to the
center of mass coordinate of the N D3 branes. For a discussion of this fact, see MAGOO page 58.

5



X1

X2

X3

Σ

Figure 5: The worldvolume of the D3 brane is represented as the boundary of a four dimensional
space Σ × time.

S3’s as ds2 = r2

L2−r2 dr2 +(L2−r2)dφ2 +r2dΩ2
3. The D3 brane is located at fixed r, with the angular

coordinate φ varying as φ̇. Ignoring the world volume gauge field on the D3 brane, the DBI action
is simply −TD3

∫

WV

√
det g. On computing the induced metric (only the coordinate φ varies with

time), we have det g = r6(1− (L2 − r2)φ̇2) det(3-sphere metric). The DBI action can be written as

SDBI = −TD3Ω3r
3

∫

dt

√

1 − (L2 − r2)φ̇2 (11)

The Aharanov-Bohm-Chern-Simons term can be written down in analogy with the case of an
electric dipole(a 0-sphere) on a 2-sphere with a magnetic monopole at its center. LABCS =
−e
∫

dt viAi(+) + e
∫

dt viAi(−). The + and − denote the positions of the positive and nega-
tive charges constituting the dipole. Let Σ be the two-dimensional manifold whose boundary is the
worldline of the dipole as shown in Figure 5. If φ̇ is the angular velocity of the dipole, it makes
φ̇/(2π) revolutions per unit time. Then, LABCS = −eφ̇/(2π)

∫

∂Σ A = −eφ̇/(2π)
∫

Σ F = −eNφ̇r2/L2

where N is the strength of the monopole charge. For the case of the D3 brane, let Σ be the four
dimensional manifold whose boundary is one orbit of the D3 brane around the S 5. Then,

LABCS =
φ̇

2π
Vol(Σ)

B

Vol(S5)
(12)

=
φ̇

2π

(

Ω3

∫ r

0
dr′ r′3

)

2πN

Ω5L5
(13)

= φ̇N
r4

L4
(14)

The angular momentum of the D3 brane is given by

l =
δS

δφ̇
= N

r4

L4
+

mφ̇(R2 − r2)
√

1 − (L2 − r2)φ̇2

(15)
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The effective potential for the D3 brane has the form V (r) ∼ r6

lL2 − Nr4 and has a minimum at

r2
∗

= l
N l2. The size of the D3 brane is determined by its angular momentum. In the SYM theory,

the angular momentum maps to the R-charge. At a radius r∗, the energy of the D3 brane is
E(r∗) = l/L which is the BPS bound for an operator with R-charge l. The analysis above used the
DBI action for the D3 brane which is valid only when the radius of the D3 brane is large compared
to α′ and this corresponds to l ∼ L. Surprisingly, the D3 brane with angular momentum around
the 5-sphere has the same quantum numbers as the KK mode of the graviton. In fact there is yet
another BPS object with the same quantum numbers[5],[4]. This is a D3 brane wrapping a spatial
S3 in AdS5 located at a point in the S5. In the SYM theory there is a single BPS operator with
R-charge l, the single trace operator Tr [X l]. Thus we have three BPS objects on the gravity side
with the same quantum numbers as the KK graviton. Since we are in the large λ regime, one can
imagine that one linear combination of these BPS short multiplets remains short, while the other
two combine to form a long multiplet. Observe that the largest radius the S 3 can have is L which
corresponds to a maximum angular momentum of lmax = N . This surprising fact called the stringy
exclusion principle matches with the result that there is no single-particle BPS state in N = 4 with
l > N . The operator O = det X has the maximum allowed l = N .

4 Other examples of the correspondence

There are other vacua of Type IIB string theory with an AdS5 factor. These would correspond to
other four dimensional CFTs. For example, the space AdS5 ×X5 satisfies the equations of motion
if X5 is a five dimensional Einstein manifold. An Einstein manifold is a manifold whose Ricci
curvature is proportional to the metric i.e. RMN = λgMN with λ constant.

N = 4 SYM is the low energy theory living on D3 branes in flat space. The transverse space to
R

3,1 ⊂ R
9,1 is R

6 which is a cone over S5 (the celestial sphere). In fact any smooth space looks
like R

6 locally and the low energy theory on the D3 branes only probes a neighbourhood of the
geometry. So if we start with D3 branes at a point on a smooth space and look at the near horizon
limit, the geometry would again look like AdS5 ×S5. One way to get around this is to consider D3
branes at a singular point in the geometry where the neighbourhood is no longer R

6.

• R
6/Γ orbifolds: Orbifolds are manifolds except for a finite set of points which have a neigh-

bourhood homeomorphic to R
6/Γ where Γ is an element of a discrete subgroup of SO(6).

The near horizon limit at large λ gives a geometry AdS5 × S5/Γ. There are prescriptions to
find the resulting QFT. The basic idea is that we have a projection Γ and we have to decide
how Γ acts on the branes. After that we just project onto the Γ invariant states.

• Cone over X5: Not all singularities are orbifolds. A classic example is the conifold.

These spaces can have q-cycles and therefore one has static baryon-like excitations of finite energy.
For the case of AdS5 × S5, we found an infinite mass baryon-like excitation (D5 brane with N
fundamental strings). It is also possible to deform these theories (by adding “fractional branes”)
so that the gauge coupling runs. In the case of the N = 4 theory we have a line of fixed points and
the dilaton is free.
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