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In today’s lecture we’ll discuss the laws of black hole thermodynamics and how AdS black holes
are related to finite temperature CFTs, and Koushik will give a related presentation.

1 Laws of Thermodynamics

Recall from last time that for a black hole

Area ∼ Entropy

κ ∼ T (1)

where κ was the surface gravity. The near-horizon metric is

ds2 ∼ −κ2ρ2dt2 + dρ2 + ... = κ2ρ2dτ2 + dρ2 + ... (2)

when we go to Euclidean time τ ≡ it. If τ has periodicity τ ∼ τ +2π/κ then the euclidean geometry
is regular.

Recall the canonical ensemble thermal partition function is

Zth = tre−H/T (3)

where e−H/T propagates the system with imaginary time t = 1/iT . Thermal equilibrium is equiv-
alent to periodic euclidean time with period 1/T , so we identify κ with temperature T .

The laws of (stationary) black hole thermodynamics, analogous to the usual laws of thermodynam-
ics, are:

• 0th (thermal equilibrium): κ is constant over the event horizon. This means temperature
is constant in space and time. Thus stationary black holes are in thermal equilibrium with
constant temperature. John thinks the proof of the 0th law doesn’t depend on the shape of
the black hole, as long as its a stationary solution.
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• 1st (conservation of energy):

dE = dM = ΩdJ + ΦdQ +
κ

8πG
dA (+PdV ) (4)

ΩdJ is the change in rotational energy, ΦdQ is the electrical energy, and κ
8πGdA = TdS is

heat exchange. This law relates the change in the energy (or equivalently mass) to changes
in various properties of the black hole.

The last term describing mechanical work PdV isn’t present for black holes but IS for black
branes...

• 2nd (entropy increases): This is the area theorem for a black hole we proved last lecture,
Ȧ ≥ 0, since S = A

4~G . (Proof of the exact relation between S and A in a later lecture.)

• 3rd (absolute zero entropy): κ (or rather T ) cannot taken to zero in a finite number of
steps. This doesn’t mean that S(T = 0) = 0, but it does probably mean at T = 0 there is a
minimum in entropy.

These laws follow from Einstein’s Equation, the energy condition we discussed last class, and
assuming we have stationary black holes.

1.1 3rd law

Since we discussed the 2nd law last time, and the 0th and 1st laws are pretty convincing, we now
provide some evidence for the validity of the 3rd law.

First, why isn’t it true that S(T = 0) = 0? Counterexamples are everywhere if you just open your
eyes to them:

• It is well known to some people that there exist supersymmetric theories with LARGE ground
state degeneracies, ∝ eQα

where Q is the charge and α is some power. So, S(T = 0) =
ln(degeneracies) ∼ Qα.

• The Kerr-Newman black hole is another counterexample. Here are some facts about the KN
black hole that you can easily derive or look up:

A = 4π(2M(M + µ) − Q2)

µ =
√

M2 − Q2 − J2/M2

κ = 4πµ/A (5)

The black hole is extremal when µ = 0. (This is also the BPS bound when the black hole
is supersymmetric.) If µ < 0 then there is a naked singularity. Note that that when µ = 0,
κ ∝ T = 0 but S ∝ A 6= 0.

As for the claims of the 3rd law, we have some anecdotal evidence. Let’s consider a non-extremal
KN black hole with J = 0, in other words a non-extremal RN black hole, so Q < M . (Everywhere
Q is really |Q|).
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What can we do to try to make this black hole extremal? We need to throw on some charge q and
mass m, such that the black hole becomes extremal, namely

M + m = Q + q (6)

How, the mass m is attracted to the beautiful black hole by a force F ∼ Mm/r2 but the charge q is
repulsed by a force F ∼ Qq/r2. Thus for the matter to fall in freely, Mm > Qq. According to some
mysterious algebra, this relation along with Q < M actually implies Q + q < M + m. Therefore
you have to force the matter onto the black hole, which somehow adds heat and prevents you from
cooling the black hole. Or you have to throw in infinitesimal little bits which takes FOREVER.

2 CFT at finite temperature

We’re going to use the power of AdSCFT to describe CFTs at finite temperature with black holes.

In particular we mean a 3 + 1 dimensional relativistic CFT. The partition function is

Z(τ) = tre−H/T = e−F/T (7)

with free energy F , on a space with geometry S1
th × Σ3 where the S1 has radius 1/T, τ ∼ τ + 1/T

and Σ3 is some 3 manifold. We can give Σ3 finite volume as an IR regulator.

This is a deformation of the IR physics (modes with ω ≫ T = EKK don’t notice).

For large V3 = V ol(Σ3), then F = cV3T
4 which is clear from extensivity of F and dimensional

analysis.

3 AdS black holes

This object goes by many names, such as planar black hole, Poincare black hole, black brane...
This is a black hole in AdSD+1, but probably many of the equations below mean D = 4. The
metric is

ds2 =
L2

z2

(

−fdt2 + d~x2 +
dz2

f

)

f = 1 − z4

z4
m

(8)

We again put the ~x coordinates on a finite volume space, for example in box of volume V3, x ∼
x + V

1/3
3 , periodic BCs. Notice that if f = 1 we get the Poincare AdS metric, and in fact f only

deviates from 1 at larger z representing the fact that this is an IR deformation.

Whence:
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• It solves Einstein’s equations with a cosmological constant Λ = (D+1)(D+2)
2L2 and asymptotes

to Poincare AdS, differing only in the IR region with a horizon at z = zm, fixed t.

• It’s the double Wick rotation of the confining solution with t = iythere, y = −itthere.

• Analogous to how we got the AdS solution from the near-horizon limit of D3-branes, it’s the
near-horizon limit of black 3-branes in R

9,1, in particular the near-extremal RR soliton with
geometry:

ds2 =
−fdt2 + d~x2

√

H(r)
+

√

H(r)

(

dr2

f(r)
+ r2dΩ2

5

)

H(r) = 1 +
L̃4

r4

f(r) = 1 − r4
H

r4
(9)

(Again f = 1 gives the usual RR soliton.) Note that there also exists a black hole which
asymptotes to GLOBAL AdS (with boundary S1 ×S3), which is known as AdS-Schwarzchild
which describes a CFT on S3 at finite temperature T.

Let’s check out the horizon properties so we can find the usual thermodynamic quantities we’re
interested in. The near-horizon metric is

ds2 ∼ κ2ρ2dτ2 + dρ2 +
L2

z2
m

d~x2 (10)

where κ = 2/zm and the temperature is T = κ/(2π) = 1/(πzm). Meanwhile the area of horizon is

A =

∫

z=zm,fixedt

√
gd3x =

(

L

zm

)3

V3 (11)

Therefore the entropy is (in the deconfined phase of the gauge theory):

S =
A

4G5
=

L3

4G5

V3

z3
m

=
N2

2π
(πT )3V3 =

π2

2
N2V3T

3 (12)

(Recall from long ago that L3

4G5
= N2

2π .)

Again, we want some anecdotal evidence (at least) to support the claim that this describes a CFT
in thermal equilibrium. There are some checks. One is just by checking the first law, which relates
horizon quantities such as T, S to global quantities such as the free energy F . Koushik will explain
just how in his talk, as sketched below.

Consider again the partition function which we claim is ZCFT = e−Sg = e−βF . Sg is the onshell
gravity action for the black hole solution and is equal to

Sg = SEH + SGH (+Sct). (13)

EH means Einstein-Hilbert and GH means Gibbons Hawking, SGH ∼
∫

∂M dDx
√

γK is a boundary
term for the action such that when we vary Sg we get the usual equations of motion. ct means
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counter-term, as we need to subtract some divergences as r → 0. You can see hep-th/9902121 for
some details.

Thus by plugging in the AdS planar black hole solution we obtain the free energy, and consistent
with the entropy calculation we did above we obtain

F

V
=

L2

16πG5

1

r4
H

=
π2

8
N2T 4 (14)

V = V3 probably. Also, zm = rH . This we claim is the strong-coupling free energy. As for the
field theory calculation it has been done at weak coupling and one obtains 4/3 times the answer at
strong coupling.

Let’s consider also the boundary stress tensor T µν which couples to the induced metric on the
boundary γµν . The energy is E = V

√
γT t

t and the pressure P involves similar expressions with
x, y, z components of T . This is also a straightforward calculation using the action above and one
obtains (E/V ) = 3/(2r4

H ) and P = 1/(2r4
H ) which satisfies E = 3P , so T µ

µ = 0 as required in a
CFT. One can do the same for the AdS Schwarzchild black hole, where E = 3/(2r4

H )+3L2/(8G). As
T → 0, rH → ∞ but E is nonzero and in fact matches the calculation for the zero-point (Casimir)
energy for N = 4 SYM on a sphere of radius L. (There is no extra 4/3 factor because...)
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