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1 Classical Blackhole Thermodynamics (Con’d)

Previously we have stated the third law for blackhole thermodynamics. To rephrase the result:

3rd Law of blackhole thermodynamics. Extremal blackholes are unnatural.

In spite of this, extremal blackholes are beloved by string theorists, because the computations are
easier. In particular, Sextr. BH(T = 0) = ln(# of ground states), and SUSY implies that this is
independent of couplings and hence can be computed in the weak coupling limit.

Previously we have also stated the second law, but in which we only considered blackholes alone.
We now consider a more general version the second law in which both blackholes and normal stuff
are included:

Generalized 2rd Law (GSL) of blackhole thermodynamics. [Bekenstein PRD 9 3292
(1974)]

Stotal = Snormal stuff + ζ
A

~GN

δStotal ≥ 0 for physical processes.

where ζ is a number yet to be determined.

The idea behind the GSL is that it will be possible to build perpetual machines if it is false.
However, there is a problem with the “lowering-the-box” energy extraction scheme described in a
previous lecture. To be more specific, suppose we lower an (infinitesimal) box of entropy from ∞
to the event horizon and extract energy along the way as described in the previous lecture. When
the box is at the event horizon, we know that Ebox(r = rs) = 0, and if we let go at that point,
∆A = 0 for the blackhole according to the first law. Hence the GSL is violated.

The other laws of classical blackhole thermodynamics also contain “flaws”:
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• Flaw # 1. Classically a blackhole cannot radiate, so TBH = 0 ?

• Flaw # 3. Classically, the area of each individual blackhole must be non-decreasing. But
thermodynamics should require only that δStotal ≥ 0. Thus the blackhole thermodynamics
and ordinary thermodynamics are not in good parallel.1

The apparent contradictions in the blackhole thermodynamic laws can be resolved by realizing that
the blackhole entropy SSek = A/~GN contains a factor of ~, hence SBek → ∞ in the classical limit
(~ → 0) when A and GN are fixed. In particular, for the box-lowering scenario, even though the
change in area δA is infinitesimal, it can still lead to a finite change ∆S in entropy. Hence there is
no contradiction with the GSL.

Similarly, from the 1st Law dM = TBekdSBek. As ~ → 0, TBek = ~κ/8πζ → 0. Hence flaw # 1 does
not lead to a contradiction in the classical limit.

Also, as ~ → 0, any finite δA for any blackhole will lead to ∆S = ∞, so flaw # 3 does not lead to
a contradiction in the classical limit.

2 Quantum Blackhole Thermodynamics

Our major result is the Hawking radiation law:

Hawking Radiation. A blackhole radiates like a blackbody with T = TBH =
~κ

2π
.

Let’s first consider some consequences before considering the explanation:

1. This fixes the numerical constant ζ to be 1/4. i.e., SBH =
A

4~GN
.

2. The area of individual blackhole can decrease, thus fixes flaw # 3 of GSL.

3. The resulting dA satisfies GSL for reasonable equation of state (E.O.S.). For example, con-
sider radiation in 4d. We have E = (1/4)aT 4 and S = (1/3)aT 3. Treating blackhole as a
blackbody in flat space, dSrad = 4

3
dE
TBH

, while energy conservation implies that dM = −dE

and hence dSBH = − dE
TBH

. Summing up2, dStotal = d(Srad + SBH) = 1
3

dE
TBH

> 0.

4. Let’s return to the box-lowering puzzle,

(a) Bekenstein bound (Conjecture). Entropy in a box of linear size R must satisfy
Sbox ≤ 2πER.

(b) Buoyancy force. Consider a box near event horizon, so that it’s top side is at r2 and the
bottom side is at r1 (see Fig. 1). The local temperature T1 (T2) on the top (bottom)

1Perhaps this is not a big deal, since individual blackholes can merge.
2Consequently, this says that the speed of sound is c2

sound = 1/3.
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side satisfies T2/T1 =
√

gtt(r1)/
√

gtt(r2). Hence T1 > T2. Consequently, there is more
radiation from the bottom than from the top3, which produces a buoyancy force ∝
displaced radiation.
As a result, there is a critical rcrit > rs for which E(displaced radiation) = Ebox(rcrit).
By dropping the box at rcrit, ∆SBH = E/TBH, but Sbox ≤ Sdisplaced radiation = E/TBH

event
horizon

r

r2

r1

T2

T1

Figure 1: Buoyancy
force on a box.

Now let’s return to the question of why TBH takes this particular form.
For a generic (possibly non-extremal) blackhole, the event horizon is lo-
cated at a zero of the emblackening factor f .

For example, for Schwarzchild blackhole,

ds2
Sch = −fdt2 +

dr2

f
+ r2dΩ2

≈ κ2R2dt2 + dR2 + r(R)2dΩ2

= −R2dη2 + dR2 + . . .

≈ −dT 2 + dZ2 + dX2 + dY 2

where in the above we have used:4 f = 1 − rH/r, rH = 2GM , R(r) =
√

r(r − 2GM) + . . ., κ = 1/4GM , η = κt, T = R sinh η and Z = R cosh η.

Notice that after the transformation, we obtain the Minkowski space R
3,1. In other words, the

Rindler space is a Minkowski space in the coordinate frame of a uniformly accelerating observer.

Graphically, what we get is Fig. 2. Notice that the two lines defined by {r = 2GM, η = ∞} and
{r = 2GM, η = −∞} divide the space into four regions { I, II, III, IV }.

The key observation is that region I is self-contained. i.e., region II and III can’t communicate
with it, while information from region IV passes through the line {r = 2GM, η = −∞} and hence
corresponds to initial data.

Therefore, at T = 0, the Z < 0 (marked by L on the figure) degree of freedom (d.o.f.) are totally
irrelevant and useless for region I. Thus we should trace over them when computing stuff in region
I.

Now, Claim:

ρR = trL|g.s.〉〈g.s.| =
1

Z e−2πHR

where HR is the riddler Hamiltonian:5

HR = “
∂

∂η
” =

∫

const. T surface
Tab

(

∂

∂η

)a

nb

and Z = trR e−2πHR .

3analogous to more water at the bottom of sea
4η is called the “Rindler time” and plays the role of rapidity
5Note that [HR] = 1 since the riddler time [η] = 1.
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Figure 2: The geometry of the Rindler space.

Notice that the density matrix we obtained is not a pure state but is entangled with the L d.o.f.
(hence S = −tr ρR ln ρR 6= 0). This is a thermal density matrix with temperature Triddler = 1/2π.

Proof of Claim [Unruh 1976]. Consider a scalar field φ in Rindler space. A complete set of
commuting d.o.f’s at T = 0 is

φ(x, y, z) =

{

φR(x, y, z) for Z > 0
φL(x, y, z) for Z < 0

φR and φL commute because they are at spacelike separated points. Any wavefunctional of the
field φ can then be written as Ψ = Ψ[φL, φR] = 〈φLφR|Ψ〉.

The ground state is just the Minkowski space vacuum. The Feynman-Kac formula gives us a path
integral representation of its wavefunctional:

Ψg.s.[φL, φR] =
1√
Z

∫

x0>0,φ(~x,x0=0)=(φL,φR)
[dφ]e−SEucl[φ]

This equation is written using constant-x0 = −iT time slices. We can gain some insight by in-
stead slicing up the path integral by constant euclidean Rindler time θ(= −iη) (see Fig. 3(a) for
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Figure 3: (a) Change in slicing sequence. The magenta lines are the old x0 slices while the blue
lines are the new θ slices. (b) Fluctuation in different regions of the Rindler space.

illustration); euclidean Rindler time is just the angular coordinate in the x0, Z plane. This yields:6

Ψg.s.[φL, φR] =
1√
Z

∫

0<θ<π
φ(θ=0)=φR

φ(θ=π)=φL

∂Rφ(R=0)=0

[dφ]e−SEucl[φ] =
1√
Z
〈φL|e−πHR |φR〉 (1)

The last condition ∂Rφ(R = 0) = 0 is simply a requirement that the function φ is regular at the
origin. We identify the RHS of (1) 〈φL|e−πHR |φR〉 as the transition amplitude.

Hence,

〈φR|ρR|φ′

R〉 =

∫

[dφL]Ψ∗[φL, φR]Ψ[φL, φ′

R]

=

(

1√
Z

)2 ∫

[dφL]〈φR|e−πHR |φL〉〈φL|e−πHR |φ′

R〉

=
1

Z 〈φR|e−2πHR |φ′

R〉

�

Some results and comments:

1. a constantly accelerated observer in R
n,1 sees a Unruh radiation with7 Tproper =

R

2π
=

a

2π
.

2. By the equivalance principle, the same happens to a blackhole. The corresponding Schwarzchild

time is t = η/κ, which implies that TBH = Triddler =
κ

2π
.

6We are transforming the variable that the function takes, rather than the function itself, and it is the function
that’s being integrated. Thus there is no Jacobian involved here.

7here the proper time is defined by ds2
proper = −R2dη2
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3. Whence does the radiation comes from? There are three types of fluctuations (see Fig. 3(b)):
(i) is just ordinary pair production fluctuation, with lifetime ∝ ~/E
(ii) is something that we need not care in region I
(iii) corresponds to stuff that enters at η = −∞, R = 0 and falls back at η = +∞, R = 0. In
Schwarzchild time this particle stays forever. Hence this particle is real.

4. What we have calculated is the density matrix of a quantum field at r ∼ rH . Not all energy
will get to ∞. Thus we have to include a greybody factor, so that:

N
(b

f)
p =

Γp

e~ω/TH ∓ 1

where Γp is the absolute cutoff for mode p.

5. Information paradox. Blackhole can form from dictionary and then evaporate into thermal
radiation. The thermal density matrix is determined by one number only.
Q1. Is this a unitarity evolution?
Q2. Entropy results from coarse-graining. What are the microstate?
Q3. How is the information stored in the blackhole?
via AdS/CFT it is possible to answer Q1 and Q2.
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