
8.821 F2008 Lecture 25: Thermal aspects of N = 4 SYM

Lecturer: McGreevy Scribe: Thomas Faulkner
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1 The N = 4 plasma at large λ

Previously in lecture 23 we gave evidence that the Black Hole thermodynamics of the AdS Black
Brane (non-extremal) solution was dual to the thermal ensemble of N = 4 SYM on R

3 at large
N and λ. Thus the gauge theory provides the microstates that are being coarse grained by the
Bekenstein-Hawking entropy of the black hole SBH .

A few comments on this observation:

1.1 Hydrodynamics

• Perturbing the equilibrium of the boundary theory with a kick will result in thermalization -
relaxation back to equilibrium.

• In the bulk the response to such a kick is for the energy of the kick to fall into the black hole.

The above two statements are related by the duality. In the long wavelength and small frequency
limit both are consistent with the hydrodynamics of a relativistic CFT. Additionally the duality
allows one to compute various transport coefficients of the gauge theory at large λ, such as the
shear viscosity, R-charge conductivity, etc. See the review [1].

1.2 Thermal Screening

At finite temperature T correlators die off exponentially at large separation r ≫ 1/T , even if
in vacuum there are massless fields which mediate long range interactions. This is because such
particles develop a thermal mass from continuously interacting with the thermal bath.

For example the force between two external charges in a gauge theory should behave at large
distances as,

Vqq̄(r) ∼
r≫1/T

e−mthr (1)
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Figure 1: A particle receives multiple kicks from its thermal surroundings. This generates a thermal
contribution to the particles mass.

where mth is the thermal mass.

The qq̄ potential can be calculated using a Wilson loop,

exp
(

−iVqq̄(r)T̃
)

=

〈

P exp

(

i

∮

Cr

A

)〉

T

≡ 〈WCr〉T (2)

where the contour Cr is a rectangle with spatial separation r and temporal separation T̃ not to
be confused with temperature. The expectation value of the Wilson loop is taken in a thermal
ensemble. The above formula is defined for T̃ ≫ r large.

Of course as we learned in a previous lecture we can compute Wilson loops at large λ using the
duality. One must find the minimal action string in the bulk which approaches Cr at the boundary.
Then the expectation of the Wilson loop is 〈WCr〉 = exp(−iSmin(Cr)).

There are two (stable) saddle points to this problem1 The two string configurations are shown in
Fig. 2. For r < r∗ the curved string has the smallest action Smin = VU (r)T̃ while for r > r∗ the
two straight strings win Smin = V||T̃ which is independent of r. Where the point of cross over is
r∗ ∼ 1/T = πzH .
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Figure 2: The two string configurations as a function of r (increasing from left to right) with the
minimum action configuration highlighted in red. For large enough r the curved string solution
ceases to exist (its action becomes complex!)

Both actions diverge at the boundary. To yield a finite result for the qq̄ potential we must renor-
malize by subtracting V||.

1There is a third (unstable) saddle point, which one can think of as coming from a local maximum of some fiducial
potential.
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After renormalization the potential looks like,

V ren
qq̄ (r) = Vqq̄(r) − V|| =

{

VU (r) − V|| r < r∗
0 r > r∗

(3)

For small r ≪ 1/T the potential approaches the T = 0 result; V ren
qq̄ ∼

√
λ

r (1 + c(rT )4 + . . .). See
Fig. 3. Since the potential vanishes for r > r∗ there is no trace of the interaction, and the gluons
mediating the interaction are screened (more than the expected exponential fall off. 2)

Note that the kink is an artifact of the large-λ approximation.
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Figure 3: The red line follows the actual potential. The other curves represent string configurations
with higher action. In particular we have included a third configuration, the highest curve, which
corresponds to the unstable solution mentioned in footnote 1.

1.3 Polyakov-Susskind Loop

The Polyakov loop is an operator defined in the Euclidean theory by,

U = P exp

(

i

∮

S1
τ

A

)

(4)

where the contour S1
τ is around the Euclidean time circle.

The expectation value of this operator gives the free energy in the presence of an external charge
in representation R;

〈trRU〉 = e−Fq(T )/T (5)

This gives an order parameter for confinement at finite T ,

Fq =

{

∞ confinement, 〈trU〉 = 0
finite deconfined 〈trU〉 6= 0

(6)

2From this one may conclude that the screening length is r∗. However there is another candidate for the screening
length which comes from the next order correction to V ren in the 1/

√
λ expansion: the two long strings may still

interact via exchange of a massive glueball in the high-T effectively 3+0 confining gauge theory. This results in a
potential ∼ e−mgballr where mgmall is the lightest mass glueball of this 3d theory. See [2].
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In the gravity dual we can compute 〈trRU〉 using a string which ends on S1
τ . The 5 dimensional

Euclidean AdSBH has the topology R
3 × D where D is a disk with boundary S2

τ at the boundary
of AdS, as in Fig. 4.
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Figure 4: The Euclidean time circle at the boundary S1
τ closes off smoothly in the bulk Euclidean

black hole solution. A string is begging to be placed here.

This geometry follows from the form of the metric,

ds2 =
L2

z2

(

f(z)dτ2 + . . .
)

(7)

Since f(z) vanishes at some z = zH the Euclidean time circle which is periodically identified shrinks
to zero size at this point. 3 So S1

τ is contractable in the full geometry, and we may wrap a string
world sheet on the disk D. It follows that the expectation value of the Polyakov loop is non zero,

〈trU〉 ∼ e−AD/α′ 6= 0 (8)

where AD is the area of the disk D. Note actually AD is infinite, coming from the usual UV
divergence associated with an infinite quark mass probe. This can be regulated in the usual way
to yield a finite result.

We thus conclude that N = 4 SYM at strong coupling is not confining on R3 for any temperature
T .

2 A large-N deconfinement phase transition.

We now want to consider the more interesting case of N = 4 SYM on S3 which does indeed exhibit
a confinement to deconfinement phase transition. Along the way we will see that the AdS/CFT
dual of this phase transition implies a dramatic consequence for Quantum Gravity; we must sum
over geometries and topologies (consistent with certain boundary conditions.)

2.1 N = 4 SYM on S3 - Kinematic Confinement

As opposed to the theory on R
3 this theory has a unique vacuum, |Ω >:

3Recall in a previous lecture we used this fact to find the period with which we must identify τ in order for the
geometry to be a smooth disk.

4



• the flat directions are lifted by the conformal coupling term RX2

• there are no zero modes for the fermions because we have taken antiperiodic boundary con-
ditions for them around the thermal circle (thus breaking SUSY.)

• there are no harmonic 1-forms on S3 so the gauge fields have no zero energy modes

• A0 can have a zero mode, however it is not propagating: the equation of motion δS/δA0 = 0
is the Gauss’ law constraint.

Gauss’ law on a compact surface implies that all physical states must be color singlets, even under
the global part of the gauge group SU(N). This is the (trivial) statement of “kinematic confine-
ment”.

We can reduce the theory on spherical harmonics on the S3 such that the operators in the theory
are Mi ∈ {KK modes of:Aµ,Ψ,X}. All Mi’s are in the adjoint representation. So low lying states
are given by

tr (M1 . . . MS) |Ω > (9)

where the trace ensures only gauge singles contribute. The energy of these states is E =∝ S/RS3

and the density of states with fixed S is the number of ways to order and choose the Mi’s. This
density of states grows exponentially with E, ρ(E) ∼ eE/Thag where Thag is called the Hagedorn
temperature. For small E, such that E ≪ N2, the density of states is independent of N , so at least
for small T ’s only these states are excited and we have,

F (T ≪ 1/RS3
) ∼ O(N0) (10)

the free energy is independent of N . For higher temperatures states with energy of order N2 become
important in the thermodynamic ensemble (in particular this must happen before the Hagedorn
temperature where thermodynamic quantities begin to diverge). The number of such states is now
no longer independent of N , simply because there are trace relations for (9) when S ∼ N2 and the
counting of such states changes.

In order to estimate F for high temperatures we can use the fact that for the CFT of N = 4, the
physics only depends on the dimensionless parameter TRS3

. So large T ’s at fixed RS3
can instead

be achieved by taking RS3
large at fixed T . Then the theory limits to a theory on R3 at fixed

temperature. For the free theory we can estimate the free energy as that of a collection of N2 free
fields,

F/T ∝ N2(RS3
)3T 3 (11)

where (RS3
)3 is the volume factor. Hence the free energy now scales like N2, which is a signal of

deconfinement. At finite N this deconfinement phase transition becomes smooth, see fig. However,
even in QCD (N = 3) it is a very sharp, dramatic feature (QCD does not need to be put on a
sphere to see this, because QCD already confines on R

3.)

See [3] for more about this.
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2.2 Gravity dual- the Hawking Page phase transition

We would like to find the Gravity dual of the situation discussed in the previous section. This was
discovered by [5] and applied to the AdS/CFT correspondence by [4].

To find the gravity dual we look for an asymptotically AdS Solution who’s boundary is (conformal)
to S3×S′

τ . That is look for a local extrema of the action I[g] = −1/(16πGN )
∫

d5x
√

g
(

R + 12/L2
)

.

The answer is the (Euclidean) AdS-Schwarzschild Black Hole, which for convenience later we will
call the space X1:

ds2 = h(r)dτ2 + dr2/h(r) + r2dΩ2
p (12)

where for p = 3,
h(r) = 1 + r2/L2 − µ/r2 (13)

For large r this metric becomes AdS in stereo-graphic coordinates (with the boundary at r = ∞.)

The mass can be computed using the usual formula,

M =

〈
∫

S3

T t
t

〉

→ µ =
16GNM

3π2
(14)

The horizon is located where h(r) vanishes. There are two roots, we will look at regions outside
the largest of the two r > r+.

r2
±

L2
= −1

2
± 1

2

√

1 +
4µ

L2
(15)

The temperature is found by demanding no conical singularity at r = r+:

T (r+) =
2r2

+ + L2

2πL2r+
(16)

Importantly this T (r+) has a minimum as a function of r+, see Fig. 5: that is there is a mini-
mum temperature T = T1 =

√
2/πL for which there exist black hole solutions. Also above this

temperature there are two types of black holes: large and small.

r+(T )largesmall =
πL2T

2

(

1 ±
√

1 − 2

π2L2T 2

)

(17)

These have the following thermodynamic properties;

• Small BH: rsmall
+ < L. For r+ ≪ L they look like black holes locally on R4,1, that is

Schwarzschild black holes. Their mass satisfies,

M small(T ) ∼ r2
+ ∼ 1/T 2 (18)

So the the specific heat is negative CV = dMsmall

dT < 0. So not only do Schwarzschild BH’s
evaporate, this process cannot be hindered by placing them in equilibrium with their sur-
roundings because of this thermodynamic instability: if its surroundings have higher T , the
BH eats some energy, grows bigger and decreasing its T .

6



rmin= L� 2

r+

T1

T

Small BH

Large BH

Figure 5: The temperature T as a function of horizon radius r+.

This is equivalent to Jeans instability in flat space; there is no canonical ensemble for gravity
in flat space.

• Large BH: rlarge
+ > L and one finds

M large(T ) ∼ r4
+ ∼ T 4 (19)

such that CV > 0. So a large BH can be in equilibrium with its surroundings, such as its own
Hawking radiation.

The heuristic reasoning for this is that AdS acts like a box (an infrared cutoff on the canonical
ensemble) for the Schwarzschild black hole. In this case if the surroundings have higher T the
Schwarzschild BH will eat some energy, grow larger and decrease its T , however now because
the surroundings are finite they will also decrease their T . If this is enough to compensate
for the decrease in the black holes T an equilibrium can be obtained.

From now on the space X2 will refer to the large BH’s described here.

For temperatures smaller than T < T1 we have not found a solution with the correct assymptotics.
Fortunately there is a solution for all T ’s which is no longer a black hole solution. It is simply the
Euclidean AdS space periodically identified, τ ∼ τ + β1. This space is called thermal AdS and will
be denoted X1. Note that S1

τ is no longer contractable. In order to be able to compare to X2 we
must have the same anti-periodic boundary conditions for the fermions (we did not have the choice
of periodic fermions for X1 because S′

τ was contractable.)

X1 and X2 have different topologies S1×B4 and B2×S3 respectively. Where Bn is an n dimensional
ball with boundary Sn−1. This situation is nicely represented by tents in Fig. 6.

In order to compare the actions of the two solutions we must make sure we have the same TRS3

for both X1 and X2 at the uv cutoff, r = r∞. This condition defines β1 in X1 in terms of T from
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Figure 6: Left: Thermal AdS (X1) which is topologically S1 × B4. Right: AdSBH (X2) which is
B2 × S3.

X2.
√

g
(1)
ττ β1 =

√

g
(2)
ττ β2 (20)

√

1 +
r2∞
L2

β1 =

√

1 +
r2∞
L2

− µ

r2∞
1/T (21)

Now recall the central formula of the AdS/CFT correspondence relating the partition function of
the CFT to the string partition function,

ZCFT (S3 × S1
τ ) ≈

∑

saddlesi

e−Isugra(Xi) (22)

which for large 1/GN is dominated by the saddle point Xi with the smallest action (free energy.)
The actions are infinite and require some sort of renormalization. We achieve this by taking the
different in actions of the two spaces,

∆I = I(X2) − I(X1) = lim
r∞→∞

1

2πGNL2
(Vr∞(X2) − Vr∞(X1)) (23)

Because Rµν ∝ gµν for these spaces the action is simply proportional to Vr∞ the regulated volume
of the space. The difference in action is finite in the limit where we take away the cutoff r∞ → ∞.

Vr∞(X2) =

∫ 1/T

0
dτ

∫ r=r∞

r=r+

drr3dω3 =
π3

4
1/T (r4

∞ − r4
+) (24)

Vr∞(X1) =

∫ β1

0
dτ

∫ r=r∞

r=0
drr3dω3 =

π3

4
β1r

4
∞ (25)

(26)

Then one finds,

∆I =
π3

8GN

r3
+(L2 − r2

+)

2r2
+ + L2

(27)

From which we conclude,

• r+ < L (low-T): ∆I > 0, such that thermal AdS (X1) has the smaller action. The free energy
which follows from the CFT partition function is,

F ∝ 0 · N2 + O(N0) (28)
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This conclusion requires a little more careful analysis of the local renormalization counter-
terms, used in order to regulate I(X1). However because the volume Vr∞(X1) only depends
on the upper radius r∞ it should be completely removed by such counter terms. Then
ZCFT ∼ e−0/GN from which (28) follows.

The Polyakov order parameter for confinement satisfies: 〈|trU|〉X1
= 0 since S1

τ is not con-
tractable. Both the above results indicate that the low-T phase is confined.

• r+ > L (high-T): ∆I < 0, so the large BH solution dominates. In this case the free energy
is, F ∝ N2. The Polyakov order parameter for confinement satisfies: 〈|trU|〉X2

6= 0 since now
S1

τ is contractable. Indicating a deconfined phase at hight T .

2.3 Cartoon of the thermal history of AdS

Using x = 〈|trU |〉 as our order parameter we can sketch the free energy as a function of x for
various temperatures. (Note this is a sketch because we don’t know F or x away from the saddle
points that we have computed above.)
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Figure 7: From left to right, top to bottom: (T < T1) Thermal AdS is the only saddle point.
(T1 < T < THP ) At T = T1 two new solutions appear corresponding to the small and large BHs.
The local maximum is unstable and corresponds to the small BH. One can check that xsmall < xbig

and Fsmall > Fbig as suggested by this graph. (THP < T < THag) At T = THP the large BH
wins thermodynamically over thermal AdS. (T > Thag) String theory on thermal AdS becomes
unstable: ∂2

xF (x = 0) < 0. This is due to a tachyon in the spectrum of a closed string wound
around the thermal circle: α′m2 = −1 + Nosc + 1/(T 2α′) which gives a Hagedorn temperature
THag = 1/

√
α′ ∼ λ1/4THP .
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