1. **Branes ending on branes.**

The Dp-brane effective action contains a term of the form

\[S \ni \int_{D_p} F \wedge C_{p-1}, \]

where \(C_{p-1} \) is the RR \(p-1 \) form, which couples minimally to D\((p-2)\)-branes. Show that a D\((p-2)\) brane can end on a D\(p\) brane without violating the Gauss law for the RR fields involved. Interpret the boundary of the D\((p-2)\)-brane in terms of the worldvolume theory of the D\(p\) brane. (If you like, focus on the case \(p = 3 \).)

2. **Timelike oscillators are evil.**

Show that the commutation relation \([a,a^\dagger] = -1\) (which we found for the oscillators made from the time coordinates of the string) implies that either

a) the energy \(H = -a^\dagger a + E_0 \)

or

b) there are states with negative norms.

3. **Extremal Reissner-Nordstrom black hole.**

As a warmup for the 10-d RR soliton, let’s remind ourselves how the extremal RN black hole works.

a) Consider Einstein-Maxwell theory in four dimensions, with action

\[S_{EM} = \frac{1}{16\pi G_N} \int d^4 x \sqrt{g} \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right) \]

\(^1\)The \(-1\) comes from \(g^{00} = -1 \).
Show that the Einstein equation $0 = \frac{\delta S_{EM}}{\delta g_{\mu\nu}}$ implies that

$$R_{\mu\nu} = aG_N \left(2F_\mu F_\nu - \frac{1}{2} g_{\mu\nu} F^2 \right)$$

for some constant a.

b) Consider the ansatz

$$ds^2 = H^{-2}(\rho) (-dt^2) + H^2(\rho) \left(d\rho^2 + \rho^2 d\Omega^2_2 \right),$$

$$F = b dt \wedge d \left(H(\rho)^{-1} \right)$$

where b is some constant. Show that the Einstein equation $0 = \frac{\delta S_{EM}}{\delta g_{\mu\nu}}$ and Maxwell’s equation $0 = \frac{\delta S_{EM}}{\delta A_\mu}$ are solved by the ansatz if H is a harmonic function on the \mathbb{R}^3 whose metric is

$$\gamma_{ab} dx^a dx^b := d\rho^2 + \rho^2 d\Omega^2_2.$$

Recall that H is harmonic iff $0 = \Box H = \frac{1}{\sqrt{\gamma}} \partial_a (\sqrt{\gamma} \gamma^{ab} \partial_b H)$.

c) Find the form of the harmonic function which gives a spherically symmetric solution; fix the two integration constants by demanding that i) the spacetime is asymptotically flat and ii) the black hole has charge Q, meaning $\int_{S^2 \text{ at fixed } \rho} *F = Q$.

d) Take the near-horizon limit. Show that the geometry is $AdS_2 \times S^2$. Determine the relationship between the size of the throat and the charge of the hole.

[If you get stuck on this problem, see Appendix F of Kiritsis’ book.]

d) If you’re feeling brave, add some magnetic charge to the black hole. You will need to change the form of the gauge field to

$$F = b dt \wedge d H(\rho) + G(\rho) \Omega_2$$

where Ω_2 is the area 2-form on the sphere, and G is some function.

4. RR soliton.

In this problem we’re going to check that the RR soliton is a solution of the equations of motion. The action for type IIB supergravity, when only the metric and the RR 5-form and possibly the dilaton are nontrivial can be written as

$$S_{IIB} = \frac{1}{16\pi G_N} \int d^{10} x \sqrt{g} \left(e^{-2\Phi} (\mathcal{R} + 4 \partial_\mu \Phi \partial^\mu \Phi) - \frac{1}{5!} F^5 \ldots F^5 \ldots + \ldots \right)$$

2
(The self-duality constraint \(F^5 = \star F^5 \) must be imposed as a constraint, and means that \(dF^5 = 0 \) implies the equations of motion for \(F^5 \).) By the way, this is the action for the string frame metric.

a) Show that the equations of motion from this action imply

\[
\mathcal{R}_{\mu\nu} = a G_N e^{2\Phi} \left(5 F^5_{\mu\nu\alpha} F^5_{\alpha} \cdots - \frac{1}{2} g_{\mu\nu} (F^5)^2 \right)
\]

for some constant \(a \).

b) Plug the following ansatz into the equations of motion:

\[
ds^2 = \frac{1}{\sqrt{H(r)}} \eta_{\mu\nu} dx^\mu dx^\nu + \sqrt{H(2)} dy^2
\]

\[
F = b(1 + \star) dt \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge dH^{-1}
\]

\[
\Phi = \phi_0
\]

\((b, \phi_0 \text{ are constants.})\) Determine the constant \(b \) and the condition on the function \(H \) for this to solve the equations of motion.

To do this, there are two options – some kind of symbolic algebra program like Mathematica or Maple, or index-shuffling by hand. The latter is much more easily done using ‘tetrad’ or ‘vielbein’ methods. I always forget these and have to relearn them every time. For a lightning review of the vielbein method of computing curvatures, I recommend d’Hoker-Freedman \textit{http://arXiv.org/pdf/hep-th/0201253}, pages 100-101, or Argurio \textit{http://arXiv.org/pdf/hep-th/9807171}, Appendix C. To help with the former option, I’ve posted an example curvature calculation in Mathematica on the pset webpage.

Note, by the way, that for values of \(p \) other than 3, the dilaton is not constant. With hindsight, this specialness of \(p = 3 \) is related to the fact that this is the critical dimension for YM theory, where \(g_{YM} \) is dimensionless.