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1 Definitions of probability

The probability P (A) of an event A is a real number which represents our belief about

how likely that event A is to occur. If the set of possibilities (that is, A and its

alternatives – this is called the sample space), is discrete, then P (A) is between 0 and

1. For today, let’s restrict ourselves to this case. The case where there is a continuum

of possibilities will be important and we’ll get to it.

The definition I’ve just described is called the ‘subjective’ (or Bayesian) definition

of probability, because it makes explicit reference to our thinking. A simpler-to-make-

concrete definition is called the ‘objective’ (or frequentist) definition, which is to imag-

ine that we have a whole big collection of identically-prepared situations where A has

a chance to occur (say N such situations, called trials), and we just count the fraction
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in which A does indeed occur:

P (A)
?
=

number of trials in which A occurs

total number of trials
.

More precisely, we should make sure we do enough trials, so that the answer doesn’t

depend on the number of trials:

P (A) = lim
N→∞

number of trials in which A occurs

total number of trials, N
.

There are situations when this frequentist definition cannot be made precise, as

when one is not able to prepare identical trials for one reason or another. Some practical

examples include: when asking for the probability that humans are responsible for

global warming, when asking for the probability that your first child will be born

in the next decade, when asking about the probability of the existence of life in the

universe. In this case one is forced to use the subjective definition. It is no less precise;

for a beautiful and wildly entertaining discussion of the point of view that probability

theory is merely the application of logic to incomplete information, I highly recommend

the book E.T. Jaynes, Probability: the Logic of Science. Alas, we will have to retreat

to the frequentist definition in this course.

A property of probability which is obvious from the frequentist definition is that

the sum of the probabilities over all possibilities had better be one: that is, for sure

something will happen, even if it’s nothing.

1 =
∑

all possibilities for the value of A

P (A) (1.1)

Note that in (1.1) I have used the letter A as a dummy variable which runs over the

whole sample space of possible events.

2 Birthday problem

The following problem will be an opportunity to practice with some important notions

in probability theory.

In a group of N people, what is the probability PN that (at least) two share a

birthday?

Some simplifications: Ignore leap year. Assume all days are represented uniformly

as people’s birthdays. This is not quite the case. A clumpy distribution of possible

birthdays increases the probability of birthday collision.
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Let’s take advantage of (1.1) to solve a slightly simpler equivalent problem: what’s

the probability P̄N that no two of the N people share a birthday? Since they are

mutually exclusive, these two probabilities are related by

P̄N = 1− PN .

To figure this out let’s put the people in some random order (imagine them telling

you their birthday one at a time as in the first recitation), and ask for the probability

that there is no collision at each step. The following digression will be useful for this.

2.1 Bayes’ rule and conditional probability

We are going to need to talk about probabilities P (x, y) that depend on multiple

random variables, whose outcomes may or may not be correlated. In the example at

hand, x can be whether person 1 and 2 share a birthday, and y can be whether person

2 and 3 share a birthday. It must be normalized so that∑
x,y

P (x, y) = 1. (2.1)

Note that if we sum over all possibilities for x, we get a probability distribution for

y:
∑

x P (x, y) = P (y), and vice versa
∑

y P (x, y) = P (x), and these distributions are

automatically normalized by (2.1).

Define the conditional probability P (x|y) to be the probability that x happens, given

that y happens. It must be proportional to P (x, y) the probability that both happen:

P (x|y) = NP (x, y). But P (x|y) is a probability on the space of possible values of x.

In particular this means: ∑
x

P (x|y) = 1

for each possible value of y. This gives us an expression to determine the normalization

N :

1 =
∑
x

P (x|y) = N
∑
x

P (x, y) = NP (y),

so N = 1/P (y) and we have derived ‘Bayes’ rule’ :

P (x, y) = P (x|y)P (y). (2.2)

Two outcomes x, y are said to be statistically independent if P (x, y) = P (x)P (y)

which means (from Bayes’ rule) that P (x|y) = P (x) and P (y|x) = P (y).
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Notice that the LHS of (2.2) is manifestly symmetric in the role of x, y, so

P (x, y) = P (x|y)P (y) = P (y|x)P (x).

This means that if we want to figure out P (x, y) we can do it by multiplying conditional

probabilities in any order.

2.2 back to the birthday problem

Let D = 365 be the number of days per year. Order the people by an index k = 1...N .

The probability that no two share a birthday is

P̄N =
∏

k=1..N

P (person k doesn’t share a birthday with any of the previously analyzed people, 1..k − 1)

The first factor in the product is just 1, since there have been no previous people. For

the second person, one possible birthday is excluded by the birthday of the first person:

P (person 2 doesn’t share a birthday with person 1) =
D − 1

D
= 1− 1

D
.

For the third person, two days are excluded, and so on until the Nth person. The

result is:

P̄N =
∏

k=1..N

(
1− k − 1

D

)
.

Note that the factors in this product are conditional probabilities: we are assuming at

each step that there was no collision at the previous steps; otherwise there would be

fewer than k − 1 days excluded at the kth step.

Note that the random variables associated with the collisions of birthdays are not

independent, since they are all constrained to be taken from the same set of 365 days.

(A similar situation holds for drawing cards from a deck.) If the collisions of pairs

were independent (which they aren’t because to specify a configuration, we only need

to specify N birthdays, not N(N − 1)/2 pairs of birthdays), we would have

P̄N
?
=
∏

pairs,p

P (pair p don’t share a birthday) =

(
1− 1

D

)number of pairs

=

(
1− 1

D

)N(N−1)
2

.

This is actually not too bad an approximation if N < D.

So the answer to our question looks like figure ??. Note that the probability of a

collision is already .5 when N = 23. This may be surprising if you confuse this question
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Figure 1: The probability of birthday coincidence as a function of the number of people.

with the question: what is the probability that someone in a room of N other people

has the same birthday as you? This is much less likely:

P (same as you) = 1− P (none same as you) = 1−
(

1− 1

D

)N−1

Note that here you don’t care if any of the N people share birthdays with each other,

so they are independent variables. This grows much more slowly with N .

For small x� 1, 1−x ∼< e−x. By ”∼<” I mean that this is a good approximation

and an upper bound. Using this, we see (without using a computer) that the probability

of no collision shrinks rapidly with N at small N :

P̄N ∼<
∏

k=1..N

e−(k−1)/D = e−
1
D

∑N
k=1(k−1) = e−

N(N−1)
2D .

A final comment about this problem. There is in fact a more direct approach to

figuring out P̄N , namely to enumerate all the possible ways to assign the people birth-

days and to count how many of these don’t involve a collision. P̄N is the fraction

without a collision. (I mention this approach only at the end of this discussion because

the method above was a useful opportunity to introduce conditional probability and

Bayes’ rule.) The number of ways to assign birthdays is DN , since there are D possi-

bilities for each person’s birthday. The number of these without a collision requires us

to choose N distinct days. The first one we choose has D options, the second one has

D − 1, the Nth has D −N + 1 options. So

P̄N =
D(D − 1)...(D −N + 1)

DN

which agrees with our previous expression.
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3 Random walk in one dimension

A drunk person is trying to get home from a bar at x = 0, and makes a series of steps

of length L down the (one-dimensional) street. Unfortunately, the direction of each

step is random, and uncorrelated with the previous steps: with probability p he goes

to the right and with probability q = 1−p he goes to the left. Let’s ask: after N steps,

what’s his probability P(m) of being at x = mL?

Note that we’ve assumed all his steps are the same size, which has the effect of

making space discrete. Let’s restrict ourselves to the case where he moves in one

dimension. This already has many physical applications, some of which we’ll mention

later.

What’s the probability that he gets |m| > N steps away? With N steps, the farthest

away he can get is |m| = N , so for |m| > N , P (m) = 0.

Consider the probability of a particular, ordered, sequence of N steps, xi = L or R:

P (x1, x2...xN) = P (x1)P (x2) · · ·P (xN) = pnRqnL .

In the second step here we used the fact that the steps are statistically independent, so

the joint probability factorizes. nR is the number of steps to the right, i.e. the number

of the xi which equal R. Since the total number of steps is N , nL + nR = N , the net

displacement (in units of the step length L) is

m = nR − nL = 2NR −N.

Note that m = N mod two.

In asking about the drunk’s probability for reaching some location, we don’t care

about the order of the steps. There are many more ways to end up near the starting

point than close by. For example, with N = 3, the possibilities are

LLL m = −3

RLL,LRL,LLR m = −1

RRL,RLR,LRR m = 1

RRR m = 3

What’s the number of sequences for a given nL, nR? The sequence is determined if

we say which of the steps is a R, so we have to choose nR identical objects out of N .

The number of ways to do this is(
N

nR

)
=

N !

nR!nL!
=

(
N

nL

)
.
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A way to think about this formula for the number of ways to arrange N = nR +

nL of which nR are indistinguishably one type and nL are indistinguishably another

type, is: N ! is the total number of orderings if all the objects can be distinguished.

Redistributing the nR R-steps amongst themselves doesn’t change the pattern (there

are nR! such orderings), so we must divide by this overcounting. Similarly redistributing

the nL L-steps amongst themselves doesn’t change the pattern (there are nL! such

orderings).

So

P (nL, nR) =
N !

nR!nL!
pnRqnL .

Note that the binomial formula is

(p+ q)N =
N∑
n=0

N !

n!(N − n)!
pnqN−n.

Since we have p+ q = 1, this tells us that our probability distribution is normalized:

N∑
nR=0

N !

nR!(N − nR)!
pnRqN−nR = 1N = 1.

The probability for net displacement m is

P (m) =
N !(

N+m
2

)
!
(
N−m

2

)
!
p
N+m

2 q
N−m

2

for N ±m even, and zero otherwise.

3.1 What we’ve shown

We have shown that the probability that an event with probability p occurs n times in

N (independent) trials is

WN(n) =
N !

n!(N − n)!
pn(1− p)N−n ;

this is called the binomial distribution. 1− p here is the probability that anything else

happens. So the analog of ”step to the right” could be ”a particular song is played

on your ipod in shuffle mode” and the analog of ”step to the left” is ”any other song

comes on”.

For example, suppose you have 2000 songs on your ipod and you listen on shuffle

by song; then the probability of hearing any one song is p = 1
2000

. Q: If you listen to
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N = 1000 songs on shuffle, what’s the probability that you hear a particular song n

times?

The binomial distribution applies. But there are some simplifications we can make.

First, p itself is a small number, and N is large. Second, the probability will obviously

be very small for n ∼ N , so let’s consider the limit n� N . In this case, we can apply

Sterling’s formula to the factorials:

WN(n) ≈ 1

n!

NN

(N − n)N−n
pn(1− p)N−n

We can use N − n ∼ N except when there is a cancellation of order-N terms:

WN(n) ≈ 1

n!

NN

(N)N−n
pn(1− p)N−n =

1

n!
Nnpn(1− p)N−n

Now we can taylor expand in small p, using ln(1− x) ≈ −x+ x2/2− x3/3 + ...

WN(n) ≈ 1

n!
(Np)ne(N−n) ln(1−p) ≈ 1

n!
(Np)ne−Np.

This is called the Poisson distribution,

Poissonµ(n) =
1

n!
µne−µ.

Note that it only depends on the product µ = pN , which for our example is pN =
1

2000
1000 = 1/2. In this case, it looks like in the figure ??.

1 2 3 4 5
n

100

200

300

400

500

600

Poisson1�2HnL

Figure 2: The Poisson distribution for pN = 1/2, Poisson1/2(n).

It may seem like your ipod is conspiring to play some songs multiple times and not

play others at all (I had this impression too until I thought about it), but it’s just

because we don’t have much intuition yet about the Poisson distribution. In fact, if

we vary µ = Np, we can make the probability that a given song is never heard much

larger than the probability that it is heard once; see figure ??.
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Figure 3: The ratio of the poisson distribution at n = 0 to n = 1 as we vary the parameter µ. (Note

that this figure is not a probability distribution.)

3.2 Some physical realizations of the 1d random walk

Besides modelling flipping of coins, and shuffle of mp3s, this is also a useful model for

several physical systems.

One example is spins in a magnet. The magnetic moment of an atom with spin 1/2

can point up or down. Sometimes this is random. What’s the net magnetic moment

of N such atoms?

Another example is the following. Consider N gas molecules in a container of

volume V . Let ν be the volume of some specific small subregion of the container. Let

n be the number of molecules in this small subregion. What’s the distribution P (n)?

Let ni=1..N be a function of the positions of the particles, which is 1 if the ith

particle is in the subregion of interest, and 0 otherwise. So n =
∑N

i=1 ni. Assume two

things:

(1) ni are independent (particles don’t interact or are not otherwise correlated).

(2) the probability of ni = 1 is p = ν/V , i.e. each particle has equal probability of

being anywhere in the big volume.

Then this is another situation where our binomial distribution applies:

P (n) =
N !

n!(N − n)!
pn(1− p)N−n

In the limit where N is large, and V is large compared to ν, we can again do the

manipulations that led to the Poisson distribution:

P (n) ≈ (αν)n

n!
e−αν
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where α = N/V is the density of particles.

4 Warmup problem: Einstein model of a solid

[from e.g. Reichl, A Modern Course in Statistical Physics]

Here’s a combinatorics problem which comes up in Einstein’s model of a solid; this

is a name for the model discussed in pset 2 problem 1 (warning: this problem is NOT

the same as the question asked there).

Q: Given a number q of identical balls, how many ways are there to put them into

N distinct bins? Call the answer NN(q).

A: Line up the bins; denote the boundaries of the bins between the balls by vertical

lines. Here is one arrangement

◦| ◦ || ◦ ◦|

which has q = 4 balls and N = 5 bins. Here is another with the same q,N :

◦| ◦ ||| ◦ ◦.

To specify such an arrangement we just need to say where to put the barriers. The

number of ways to do this is just like in the 1d random walk with a fixed number of

steps: the number of ways to arrange q + N − 1 objects where N − 1 of them are of

one type and q of them are of another type is

NN(q) =

(
q +N − 1

q

)
=

(q +N − 1)!

q!(N − 1)!
.

The physical application I mentioned involves some quantum mechanics. Consider

a collection of N harmonic oscillators (masses attached to springs), all with natural

frequency ω which are arrayed in space somehow. They are distinguishable by their

location. (This is the Einstein model of a solid because the oscillators don’t interact

with each other; interactions were included by Debye.) The possible states of each

oscillator is labelled by a whole number mi = 0, 1, 2... indicating how excited it is;

this number is called a “number of quanta”. The total energy is determined by the

sum of these numbers (this is where it’s important that the oscillators are harmonic)

q =
∑N

i=1 mi, the total number of quanta. So if we think of mi as the number of balls

in bin i, the number of ways to distribute these quanta among the oscillators is NN(q);

this is the number of microstates of the Einstein solid with fixed energy.

We can come back to this later and use this result to compute thermodynamic

properties of the resulting solid.
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4.1 Thermodynamic properties of the Einstein solid

We can use the preceding result to compute thermodynamic properties of the resulting

solid. Recall the relation between entropy and temperature:

dS =
dE

T
.

On the LHS dS is the change in entropy of a system to which we just added heat at

temperature T . On the RHS dE is the amount of heat we added, i.e. by how much

the internal energy of the system increased.

We’ve just figured out SN(E) for the Einstein solid, because we know S(q) and we

know E in terms of q. We have

SN(q) = kB ln

(
(N − 1 + q)!

(N − 1)!q!

)
≈ kB ln

(
(N + q)N+q

NNqq

)
= kB ((N + q) ln(N + q)− q ln q −N lnN)

where we used N � 1 and Stirling. But as we said above the number of quanta q

determines the energy; the relevant relation is

E(q) =
N∑
i=1

~ω(mi +
1

2
) = ~ω(q +N/2).

So the above formula gives SN(E).

Using the key relation between temperature and entropy, we can find the energy of

the solid as a function of the temperature:

1

T
=
dS

dE
=

dq

dE

dS

dq
=

1

~ω
kB (+ ln(N + q) + 1− ln q − 1)

which says that
~ω
kBT

= ln

(
N + q

q

)
.

Notice that the LHS is dimensionless (as it should be since the LHS is) because both

kBT and ~ω have dimensions of energy. Let’s exponentiate the both hand side (BHS)

and solve for q:

q =
Ne
− ~ω
kBT

1− e−
~ω
kBT

and hence

E = N
1

2
~ω +N~ω

e
− ~ω
kBT

1− e−
~ω
kBT
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The first term is the sum of the zero-point energies of all the oscillators. The second

term depends on the temperature. You will soon recognize the structure of this function

as characteristic of a system of bosons in thermal equilbrium.

This formula says how much energy you have to put in to raise the temperature of

the solid, which is something that’s quite measurable; it gives the right answer if the

temperature isn’t too low. (For lower temperatures one must take into account the

interactions between the oscillators; this is the Debye model.)

5 Expectation values

[Blundell ×2]

Given a probability distribution for a random variable x we can define its average

value or mean or expectation value:

〈x〉 ≡
∑
x

P (x)x

(we can do this as long as x takes values in a set with a rule for addition!). Sometimes

this is denoted x̄. Note that the mean value of x is not necessarily a value that it can

take within the distribution. For example, the average number of children per family

is 2.4.

We can also define moments of the distribution,

〈xn〉 ≡
∑
x

P (x)xn

(assuming now the variable lives in a space with a multiplication rule). If we know

enough of these, the distribution P is specified. Indeed, we can define the expectation

value of any function of the random variable:

〈f(x)〉 ≡
∑
x

P (x)f(x).

Notice that taking expectation values is a linear operation:

〈af(x) + bg(x)〉 = a 〈f(x)〉+ b 〈g(x)〉

if a, b are constants independent of x.

Suppose we want to know how well the mean value of x represents what will happen,

e.g. how certain are we that the value we get for x will be 〈x〉. Consider the variable
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x−〈x〉 which represents the deviation from the mean value. Its own expectation value

is

〈x− 〈x〉〉 = 0

so this isn’t so useful for telling us about the distribution. But the mean of its square

is

σ2
x ≡

〈
(x− 〈x〉)2

〉
called the variance. Its square root is the standard deviation: σx =

√
〈(x− 〈x〉)2〉.

5.1 example 1: gaussian distribution

At this point I must admit that we could be talking about a continuous distribution.

In that case p(x)dx represents the probability to find x in the interval (x, x+ dx), and

the summation symbols I’ve been writing as
∑

x really represent integrals,
∫
dx.

To get a feel for the meaning of σx, consider the distribution

p(x) = Ce−(x−a)2/2s2

on the real line, x ∈ (−∞,∞).

Determine C so that
∫∞
−∞ dxp(x) = 1.

Show that 〈x〉 = a.

Show that σx = s.

Please see Tom Greytak’s probability notes, page 13 for how to do the integrals.

The gaussian distribution is special. It is the only distribution on the real line whose

higher cumulants (the moments of the deviation 〈(x− 〈x〉)n〉 with n > 2) all vanish.

For reasons that will hopefully become clear, this makes it ubiquitous in situations

with many random variables; this ubiquity is called the Central Limit Theorem.

5.2 example 2: binomial distribution

The distribution for the number of steps to the left nL after N steps of a 1d random

walk is

WN(nL) =
N !

nL!(N − nL)!
pnLqN−nL

(this is for 0 ≤ nL ≤ N , otherwise the probability is zero). What is 〈nL〉?

〈nL〉 =
N∑

nL=0

N !

nL!(N − nL)!
qN−nLpnLnL.
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This would be a binomial sum if not for the annoying factor of nL in there. Here is a

wonderful math trick: Observe that nLp
nL = p∂pp

nL . Suppose temporarily that p and

q were independent, and not related by p+ q = 1. Then the dependence on p appears

only in this pnL and we could write:

〈nL〉 = p∂p
N !

nL!(N − nL)!
qN−nLpnL

= p∂p(p+ q)N

= Np(p+ q)N−1. (5.1)

Our journey to this imaginary1 world where probabilities don’t sum to one has allowed

us to do the sum; now we restore unitarity by setting p + q = 1 and returning home

with our answer:

〈nL〉 = pN.

In retrospect this answer is obvious from the definition of p as the probability of a

left step

p =
number of left steps

total number of steps
=
〈nL〉
N

.

Similarly, 〈nR〉 = Nq, and 〈nR + nL〉 = Nq + Np = N(q + p) = N. The average

displacement is

〈m〉 ≡ 〈nL − nR〉 = N(p− q).

Notice that this vanishes if p = q.

A fun further example is to work out the variance of the distribution for nL using

this trick of differentiating under the sum. You should do this. Rather than doing

this one example here, let’s discuss a wider class of examples that exhibit the same

important behavior as a function of N .

5.3 Behavior of the variance under a linear change of variables

Suppose x is a random variable valued on the real line, and y = ax+ b.

Q1: Relate 〈y〉 and 〈x〉:
〈y〉 = a 〈x〉+ b,

since taking expectation values is a linear operation.

Q2: Show that

σy = aσx.

1Actually it’s not so hard to introduce simple modifications of the model which make this not so

crazy-seeming: e.g. you could allow a third possibility at each step (say the walker just stays where

he is) with infinitesimal probability). But how one does this doesn’t affect the answer.
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6 Pictures of binomial distribution, how to make

plots in Mathematica

The discussion the previous set of notes about approximating the binomial distribution

as a Poisson distribution was valid when two things happen: when N (the number of

trials) is large, and when p (the probability of our event (e.g. left step) on each trial) is

small. If N is large but p is not small, the distribution instead approaches a gaussian

distribution. I won’t give a slick way to prove this analytically right now, but it is

vividly demonstrated by just looking at some plots.

20 40 60 80 100
n

0.05

0.10

0.15

0.20

0.25

PN HnLD

Figure 4: Binomial distributions PN (n) for various N = 10, 30, 50, 100 in red, purple, green blue

respectively.

The following command will make one of the plots shown above:

NN=100;

Plot[ Factorial[NN]/(Factorial[n]Factorial[NN-n]) (1/2)^n (1/2)^(NN-n),{n,0,NN}];

Clear[NN];

7 Warmup problem: two discrete random variables,

conditional probabilities

[from 8.044 S2008 pset 2]

Consider the distribution on two integer random variables

p(n, l) =

{
ce−an, n ≥ 0, |l| ≤ n

0, otherwise.
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a is a constant constrained by e−a < 1; c is a constant determined by normalizing the

distribution (it depends on a).

(a) Find p(n)

p(n) =
n∑

l=−n

p(n, l) = (2n+ 1)ce−an

1 2 3 4 5 6 7
n

0.05

0.10

0.15

pa=1HnL

Figure 5: Part (a): p(n) for the case a = 1. The normalization constant c is rather horrible.

(b) Find p(l|n)

p(l|n) =
p(n, l)

p(n)
=

1

2n+ 1

It’s just flat, the uniform distribution over the range allowed by the given value of n.

(c) Find p(l)

p(l) =
∞∑
n≥|l|

ce−an =
∞∑

m≡n−|l|=0

e−amce−a|l| =
c

1− e−a
e−a|l|.

(d) Find p(n|l).

p(n|l) =
p(n, l)

p(l)
= e−a(n−|l|)(1− e−a).
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8 Applications of Poisson statistics

8.1 Distance to nearest gas atom

Recall that in a gas of atoms with random uncorrelated positions, the number of gas

molecules in a subvolume satisfies Poisson statistics. Consider N gas molecules in a

container of volume V . Then

P (one gas atom in infinitesimal volume dv) =
N

V
dv

(and the probability of more than one is negligible). Let v be the volume of some

specific subregion of the container. Then we showed previously that

P (m atoms in volume v) = e−Nv/V
(Nv/V )m

m!
≡ PoissonNv/V (m).

2

What’s the distribution of distances between neighboring gas atoms, P (r) ≡ P (distance nearest gas atom is r)

?

P (r)dr = P (no atom within radius r) · P (1 atom between r and r + dr)

= PoissonNv/V (0)|v= 4
3
πr3 · PoissonNdv/V (1)|dv=4πr2dr

= e−
4
3
πr3N/V 4πr2dre−4πr2drN/V = e−

4
3
πr3N/V 4πr2dr.

2Here’s how we did it: Let mi=1..N be a function of the positions of the particles, which is 1 if the

ith particle is in the subregion of interest, and 0 otherwise. So m =
∑N
i=1mi. Assume two things:

(1) mi are independent (particles don’t interact or are not otherwise correlated).

(2) the probability of mi = 1 is p = ν/V , i.e. each particle has equal probability of being anywhere in

the big volume.

Then this is another situation where our binomial distribution applies:

P (m) =
N !

m!(N −m)!
pm(1− p)N−m

In the limit where N is large, and V is large compared to ν, we can again do the manipulations

that led to the Poisson distribution:

P (m) ≈ (αν)m

m!
e−αν

where α = N/V is the density of particles.
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Figure 6: The distribution of distances to the nearest gas atom, for N/V = 1/length unit3 in

whatever length unit you like.

The max probability occurs at

0 = ∂r

(
−4

3
πr3N/V + ln(4πr2)

)
= −4πr2N/V + 2/R

that is

rmax =

(
V

2πN

)1/3

which, up to numerical factors, should not be surprising.
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8.2 Shot noise

[from Balian]

Consider a vacuum tube, aka ‘thermionic emitter’ which is a hot metal plate spitting

out electrons across a vacuum to produce a current I, which on average is

〈I〉 = eν

where ν is the average number of electrons emitted per unit time and e = 10−191.6C is

the charge of an electron. The discrete nature of the charge carriers leads to fluctuations

in the current ∆I ≡
√
〈I2〉 − 〈I〉2. These fluctuations can be used to measure the

charge of the electron. Suppose we measure I for one second at a current of 1µA.

(a) What’s P ( n electrons emitted in time t )?

Since the probability for one emission in interval dt is νdt, if we assume the emission

events are independent, this satisfies the criteria for Poisson:

P ( n electrons emitted in time t = Poissonνt(n) = e−νt
(νt)n

n!
.

(b) What’s ∆I?

The current we measure if we average over a time t (= 1 sec in the example) is

I =
(number of electrons, n)e

t
.

〈I〉 =
〈n〉 e
t

=
νte

t
= νe.

〈
I2
〉

=
〈n2〉 e2

t2
=

((νt)2 + νt) e2

t2

∆I2 =
〈
I2
〉
− 〈I〉2 =

νte2

t2
=
νe2

t
.

Notice that the dependence of ∆I on e, ν is different from that of I and so if we

know both I and ∆I, we can figure out e.

Plugging in numbers: if 〈I〉 = 1µA then ν = 〈I〉 /e = 1013e−/s and

∆I = e

√
ν

t
∼ 10−12.5A

which is apparently measurable by amplifying the resulting potential difference across

a big resistor.

22



9 Characteristic functions or generating functions

9.1 mean and variance of binomial distribution

The distribution for the number of steps to the left nL after N steps of a 1d random

walk is

WN(nL) =
N !

nL!(N − nL)!
pnLqN−nL

(this is for 0 ≤ nL ≤ N , otherwise the probability is zero). What is 〈nL〉?

〈nL〉 =
N∑

nL=0

N !

nL!(N − nL)!
qN−nLpnLnL.

This would be a binomial sum if not for the annoying factor of nL in there. Here is a

wonderful math trick: Observe that nLp
nL = p∂pp

nL . Suppose temporarily that p and

q were independent, and not related by p+ q = 1. Then the dependence on p appears

only in this pnL and we could write:

〈nL〉 = p∂p
N !

nL!(N − nL)!
qN−nLpnL

= p∂p(p+ q)N

= Np(p+ q)N−1. (9.1)

Our journey to this imaginary3 world where probabilities don’t sum to one has allowed

us to do the sum; now we restore unitarity by setting p + q = 1 and returning home

with our answer:

〈nL〉 = pN.

In retrospect this answer is obvious from the definition of p as the probability of a

left step

p =
number of left steps

total number of steps
=
〈nL〉
N

.

Similarly, 〈nR〉 = Nq, and 〈nR + nL〉 = Nq + Np = N(q + p) = N. The average

displacement is

〈m〉 ≡ 〈nL − nR〉 = N(p− q).

Notice that this vanishes if p = q.

A fun further example is to work out the variance of the distribution for nL using

this trick of differentiating under the sum. You should do this. Rather than doing this

3Actually it’s not so hard to introduce simple modifications of the model which make this not so

crazy-seeming: e.g. you could allow a third possibility at each step (say the walker just stays where

he is) with infinitesimal probability). But how one does this doesn’t affect the answer.
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one example here, let’s discuss a machine for computing and packaging the information

about the moments of a distribution.

9.2 Characteristic functions

Recall moments:

〈xm〉 ≡
∑
x

p(x)xm =

∫
dxp(x)xm.

A useful device for packaging the moments of a distribution is called its characteristic

function:

p̃(k) =
〈
e−ikx

〉
=

∫
dxp(x)e−ikx =

〈
∞∑
m=0

(−ik)m

m!
xm

〉
=

∞∑
m=0

(−ik)m

m!
〈xm〉 .

It’s the Fourier transform of the function p(x). Note that it is a generating function

for the moments:

(∂−ik)
m p̃(k)|k=0 = 〈xm〉 .

The distribution can be returned by inverse fourier transform:

p(x) =

∫
dk

2π
p̃(k)e+ikx.

The generating function for the cumulants 〈xm〉c of the distribution is the log of

p̃(k):

ln p̃(k) =
∞∑
n=1

(−ik)m

m!
〈xm〉c

The first two cumulants are familiar, the mean and variance:

〈x〉c = 〈x〉
〈
x2
〉
c

= σ2
x =

〈
x2
〉
− 〈x〉2 .

You can figure out the relationships between cumulants and moments by comparing

the taylor coefficients of ln f(k) with those of f(k).

Some examples.

1. Gaussian distribution

p(x) =
1√

2πs2
e−

(x−λ)2

2s2

p̃(k) =

∫
dx

1√
2πs2

e−
(x−λ)2

2s2
−ikx = e−ikλ−k

2s2/2.
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2. Binomial distribution

PN(n) =
N !

n!(N − n)!
pnqN−n

p̃N(k) =
〈
e−ikn

〉
=
∞∑
n=0

e−ikn
N !

n!(N − n)!
pnqN−n

∞∑
n=0

N !

n!(N − n)!

(
e−ikpq−1

)n
qN = (pe−ik+q)N

Notice that the characteristic function factorizes:

ln p̃N(k) = N ln(pe−ik + q) = N ln p̃1(k)

p̃ is a product of N copies of the characteristic function for one trial (and hence

its log is a sum of N copies). This is a key property of independent random

variables.

3. Poisson distribution

p̃(k) =
∞∑
n=0

1

n!
µne−µe−ikn = e−µ

∑
n

1

n!
(µe−ik)n == e−µeµe

−ik
= eµ(e

−ik−1).

ln p̃(k) = µ
(
e−ik − 1

)
= µ

(
−ik + (−ik)2/2 + ...

)
All cumulants are the same and they are all equal to µ.

4. Exponential distribution

p(x) = Ae−x/λ

Normalization demands that A = 1/λ.

p̃(k) =
1

1 + ikλ

This construction also works and is useful for multiple random variables, e.g. given

p(x1, x2, ...xN), we can construct

p̃(k1, k2, ...kN) ≡
〈
e−ik1x1−ik2x2...

〉
.

If we are interested e.g. in just the sum of these random variables, X ≡
∑N

i xi, then

we can focus on

p̃(k1 = k2 = ... = kN = k) =
〈
e−ik

∑N
j=1 xj

〉
.

Notice that this is the characteristic function for (i.e. the fourier transform of) the

reduced probability distribution for X (the squashed mountain) p(X):

p(X) =

∫
dx1...dxNp(x1, ...xN)δ(X −

∑
j

xj).
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4

Hint: I’m telling you all this stuff in this section because of problem 1 on pset 3. A

very useful intermediate step there is to find

p̃(k) =
〈
e−ik(n1+n2+n3)

〉
where n1,2,3 are the results of the three dice throws.

9.3 Behavior of the variance under a linear change of variables

Suppose x is a random variable valued on the real line, and y = ax+ b.

Q1: Relate 〈y〉 and 〈x〉:
〈y〉 = a 〈x〉+ b,

since taking expectation values is a linear operation.

Q2: Show that

σy = aσx.

10 Pictures of binomial distribution, how to make

plots in Mathematica

The discussion the previous set of notes about approximating the binomial distribution

as a Poisson distribution was valid when two things happen: when N (the number of

trials) is large, and when p (the probability of our event (e.g. left step) on each trial) is

small. If N is large but p is not small, the distribution instead approaches a gaussian

distribution. I won’t give a slick way to prove this analytically right now, but it is

vividly demonstrated by just looking at some plots.

The following command will make one of the plots shown above:

4One way to check this is to use the Fourier representation of the delta function:

δ(X −
∑
j

xj) =

∫
dk

2π
eik(X−

∑
j xj).

Alternatively, just plug in the definitions:∫
dXp(X)e−ikX =

∫
dX

∫ ∏
dxjp(x1..xN )δ(X −

∑
j

xj)e
−ikX =

〈
e−ik

∑
xj

〉

26



20 40 60 80 100
n

0.05

0.10

0.15

0.20

0.25

PN HnLD

Figure 7: Binomial distributions PN (n) for various N = 10, 30, 50, 100 in red, purple, green blue

respectively.

NN=100;

Plot[ Factorial[NN]/(Factorial[n]Factorial[NN-n]) (1/2)^n (1/2)^(NN-n),{n,0,NN}];

Clear[NN];

11 Warmup problem: optimal selection

[from Kardar, Statistical Physics of Particles, problem 2.4]

“In many specialized populations, there is little variability among the members. Is

this a natural consequence of optimal selection?”

For example, take a gazillion random humans and break them into groups of n.

Make each group of n race some fixed distance, say 26.2 miles, and record their

average speed. Normalize these results by the world record, which is (amazingly)
26.2 miles

2:03:59 = 123.98 minutes
(held by Haile Gebrselassie since 2008), so r = speed

world record speed
∈

[0, 1]. (For people who don’t make it the whole distance (e.g. are infants and can’t

walk yet) the result is r = 0.) Now suppose we select the largest result from each

group of n, i.e. the winner of each race, and call it x. What will be the distribution of

values of x? If we pick n big enough, so that we find an elite marathon runner in each

group, they are going to cluster pretty close together.

(a) Let {rα} be n random numbers, each independently chosen from a probability

density p(r), with r ∈ [0, 1]. Find the probability density pn(x) for the largest value in

the set, i.e. for x = max{r1, ...rn}.

This is a great application of the graphical method for changing variables.
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A Find the region Rη of r1...rN where the max is less than some value η: Rη =

{r1...rn|x ≤ η}. This region is simple to understand: if the biggest of the rα is less than

η, then all of them must be less than η! :

Rη = [0, η]× [0, η]× ...× [0, η] = [0, η]n.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: The region where the maximum of the random variables is less than η = .8 for the case

n = 2.

B Find an integral expression for the cumulative probability:

Px(η) =

∫
Rη

dr1...drnp(r1)...p(rn) =

∫ η

0

dr1p(r1)...

∫ η

0

p(rn) =

(∫ η

0

drp(r)

)n
C Differentiate:

px(η) = ∂ηPx(η) = ∂η

(∫ η

0

drp(r)

)n
= np(η)

(∫ η

0

drp(r)

)n−1

.

(b) Consider the special case where p(r) is constant. Find 〈x〉 ,Var(x) for this case

and think about what happens at large n.

If p(r) =

{
1, r ∈ [0, 1]

0, else
then

∫ η
0
drp(r) = η and

p(x) = np(x)xn =

{
nxn−1, x ∈ [0, 1]

0, else

Note that the distribution is properly normalized 1 =
∫ 1

0
p(x)dx =

∫ 1

0
nxn−1dx.

So

〈x〉 =

∫ 1

0

dxxnxn−1 =
nxn

n+ 1
|1x=0 =

n

n+ 1

n→∞
≈ 1

〈
x2
〉

=

∫ 1

0

dxnxn+1 =
nxn+1

n+ 2
|1x=0 =

n

n+ 2
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Varx =
n

n+ 2
−
(

n

n+ 1

)2

=
n(n+ 1)2 − (n+ 2)n

(n+ 1)2(n+ 2)
=

n

(n+ 1)2(n+ 2)

n→∞
≈ 1

n2

At large n, the mean approaches 1 and the variance dies rapidly. The answer to the

question is ‘yes’, at least under the given assumptions.

0.2 0.4 0.6 0.8 1.0
x
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10
15
20
25
30

pHxL

Figure 9: The distribution for the max of n = 31 random variables uniformly distributed over the

unit interval. It is very sharply peaked around the upper limit!

Note that if we were asked about the distribution for minimum in each set of

n, we wouldn’t have had as easy a time using this graphical method. But there’s

an easy modification of it: instead of computing the cumulative probability P (η) =∫
Rη
p(rα)dr1...drn we could compute

1− P (η) =

∫
region where min{r1...rn} = η

p(rα)dr1...drn

and then find p(x) by

p(x) = −∂x(1− P (x)).

12 An alternative to the graphical method for chang-

ing variables in probability distributions

Despite the previous ringing endorsement of the graphical method we have learned, I

want to say some more words about changing variables in probability distributions. I

will describe it in the context of Problem set 3 number 7e. This is an example where

we have a distribution for some random variables, and we want to find the resulting

distribution for a function of those variables. So you could use the ABC procedure that

Krishna described in lecture and which is in Greytak’s notes, and which is exemplified

above. Alternatively, there may be cases where you might prefer the more succinct

prescription:

px1−x2(α)) =

∫
all values

dx1dx2p(x1, x2)δ(α− (x1 − x2))
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where δ is the dirac delta function, which will set the dummy variable α equal to

x1 − x2. In words, the distribution for α is determined by summing over all values

of x1 and x2 weighted by their joint distribution p(x1, x2) but forcing alpha to equal

the difference using the dirac delta function. You can use the delta function to do the

integral over one of the variables, say x2, by solving for x2: where the delta function is

nonzero x2 = x1 − α. This leaves us with:

p(α) =

∫
all values of x1

dx1p(x1, x1 − α)

Note that p(x1, x1 − α) will vanish if we go outside the allowed range (which in the

pset problem is (0, π)).

12.1 Application to pset 3 problem 4

In this problem we are given some distribution p(ν) for a random variable ν ≥ 0. We

are asked to find the resulting distribution for

λ ≡ c

ν
. (12.1)

(ν is frequency, λ is wavelength, c is the speed of light.)

As in the previous section, we can find this by summing over all values of ν a delta

function which sets the right function of ν equal to our new variable:

pλ(l) =

∫
dνpν(ν)δ

(
l − c

ν

)
. (12.2)

Note that I have used subscripts to distinguish p(λ) and p(ν) because they are different

functions, not just one function evaluated in terms of a different independent variable.

This is the real reason for all the business with the dummy variables. The direct

relation between these functions is (which follows from (12.2)):

|pλ(λ)dλ| = |pν(ν)dν| (12.3)

To see that this follows from (12.2), just change variable of integration in (12.2) from

ν to L = c
ν

so dν = − c
L2dL and so

pλ(l) =

∫ 0

∞

−cdL
L2

pν

( c
L

)
δ (l − L) =

∫ ∞
0

cdL

L2
pν

( c
L

)
δ (l − L) . (12.4)

Now we can easily do the L-integral using the delta function by setting L = l and find

pλ(l) =
c

l2
pν

(c
l

)
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Comments: (1) given the relation (12.1) the measures are related by

dν = −cdλ
λ2

(or dν
ν

= −dλ
λ

) . The minus sign is because ν increasing means λ decreasing. In the

relationship

1 =

∫ ∞
0

dνpν(ν) =

∫ ∞
0

dλpλ(λ)

(or in any other relationship between cumulative probabilities) this is taken care of by

the fact that the limits of integration are also switched.

(2) One should be careful in using (12.3) in the case that the two variables are

not monotonic functions of each other, since this means that there can be more than

one value of the original variable which give the same value of the function (i.e. the

function may not be uniquely invertible). This subtlety is taken care of by either the

delta function formula (12.2) or the graphical ABC method.

(3) Notice that the seemingly-pedantic subscripts on the probability distributions

are actually very significant:

pν(ν) 6= pλ(c/ν) ;

they are not the same function! Rather (12.3) is closer to the truth.

(4) The result described here can be considered to be a property of the dirac delta

function:

δ(l − f(ν)) = δ(f−1(l)− ν)
1

|df/dν|
.

Note that the function f does not necessarily have a unique inverse; one must sum over

all inverses that exist:∫
dlδ(l − f(ν))g(l) =

∑
νi|f(νi)=l

1

|∂νf(νi)|
g(f(νi))

12.2 More examples

In case this is not enough examples for you, there will be one more in the last section

of these notes about the Central Limit Theorem. Also, you might try pset 3 problem

3 from the S2008 OCW version of 8.044: http://ocw.mit.edu/courses/physics/8-044-

statistical-physics-i-spring-2008/assignments/ps3.pdf. Finally, problem 1 of pset 4 is

another opportunity.
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13 Comments on central limit theorem

[from Kardar chapter 2]

Last time we introduced the characteristic function p̃(k) of a distribution p(x)

p̃(k) =
〈
e−ikx

〉
which is its fourier transform. This definition can be generalized to multiple random

variables. Given p(x1, ..., xN),

p̃(k1, ..., kN) =
〈
e−ik1x1e−ik2x2 ...e−ikNxN

〉
=
〈
e−i

∑N
i=1 kixi

〉
which generates correlation functions of the xi:

〈xm1
1 ...xmNN 〉 =

N∏
i=1

(∂−iki)
mi p̃(k1, ..., kN)|ki=0

Suppose we’re interested in the sum of these RVs, which KR calls SN :

X ≡ x1 + ...+ xN =
N∑
i=1

xi

This has a distribution (using the trick described above) given by

p(X) =

∫
dx1...dxNp(x1, ..., xN)δ

(
X −

N∑
i=1

xi

)
.

Its characteristic function is

p̃X(k) =
〈
e−ik

∑
j xj
〉

=

∫
dXe−ikXp(X) = p̃(k1 = k2... = kN = k).

We can use this object to motivate the Central Limit Theorem (CLT).

Consider the log of this object ln p̃X(k); recall that this is the generating function

for cumulants, which are some convenient combinations of the moments:

ln p̃X(k) = −ik 〈X〉c +
(−ik)2

2

〈
X2
〉
c

+ ...

this expression defines the objects 〈Xm〉c. By comparing to the taylor expansion of

ln p̃, we find

〈X〉c =
N∑
i=1

〈xi〉c ,
〈
X2
〉
c

=
N∑

i,j=1

〈xixj〉c ,
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where 〈xixj〉c is defined from the Taylor expansion of ln p̃(k1...kN).

Consider the case where the RV’s are statistically independent and for convenience

identically distributed :

p(x1, ...xN) =
N∏
i=1

p(xi)

(this is sometimes abbreviated ‘iid’ for ’identically, independently distributed’). Then

p̃(k1...kN) =
∏
i

p̃i(ki) =
∏
i

p̃(ki)

since the integrals over xi don’t care about each other; in the last step we used the

‘indentically’ part. Further p̃X(k) = p̃(k)N . This means that the ‘cross-cumulants’

〈xixj〉c for i 6= j all vanish – the RVs are uncorrelated. So

〈Xm〉c =
N∑
i=1

〈xmi 〉c = N 〈xm〉c .

Now if we let

y ≡ x−N 〈x〉√
N

then we have 〈y〉 = 0,Var(y) = 〈y2〉c = 〈x2〉c but

〈ym〉c ∝ N1−m/2

which for m > 2 vanishes as N →∞. Since the Gaussian distribution is the only one

whose only cumulants are the first two, this means that p(y) is Gaussian. This the

CLT:

p(y) =
1√

2π 〈x2〉c
e
−y2

2〈x2〉c

Actually, we didn’t need the RVs to be SI in order to obtain this result. We just

need that they are not too correlated. A sufficient condition is

N∑
i1..im

〈xi1 ...xim〉c � O
(
Nm/2

)
in order for the higher cumulants of y to vanish at large N .

33



14 Comment about thermodynamic variables which

are neither intensive nor extensive

In lecture, extensive thermodynamic variables were defined to be proportional to the

number of particles N1, while intensive variables go like N0. The interesting question

arose as to whether there are other alternatives for the dependence on N of thermody-

namic variables besides these two powers. If the particles are free, i.e. do not interact

with each other, other things don’t arise. More generally, when interactions are impor-

tant, there are indeed other possibilities. Unfortunately I’m having a hard time coming

up with an example that’s simple enough to be worth explaining here (the theory of

N D0-branes in type IIA superstring theory, which has phases where the energy goes

like N2, doesn’t cut it).

15 1d chain: entropic forces (another application of

the binomial distribution and its gaussian peak)

Here is another application of the manipulations Krishna did in lecture on Wednesday

Feb. 23, 2011, exhibiting the gaussian nature of the binomial distribution at large N .

[From 8.08 pset 1] This problem also has some conceptual overlap with problem 7 of

pset 4.

Consider a flexible chain of N links of length a. Each link can point up or down.

A ball of mass m is attached to the end of the chain. Every configuration of the chain

has the same energy, except for the gravitational energy associated with the height of

the ball.

(a) How many configurations of the chain produce a net length L? Call it Ω(L).

Let n↑ and n↓ denote the number of links which point up or down.

L

a
= n↑ − n↓ = 2n↓ −N

We used the fact that the total number of links is N = n↑ + n↓. So: n↓(L) = L/a+N
2

.

The counting of configurations is the same as in coin flipping or as in the random

walk in one dimension.

Ω(L) =

(
N

n↓(L)

)
=

N !(
N+L/a

2

)
!
(
N−L/a

2

)
!

Note that the length with the maximum number of configurations is L = 0. If we

ignored the force from the mass, the most probable configuration would be L = 0.
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(b) Find the energy and entropy of the chain when the length of the chain is L.

What happens in the (most likely) limit L� Na?

E = −mgL

up to an additive constant which will not matter.

S = kB ln Ω.

I will work in units where kB = 1 for the rest of this discussion. In the limit L/a� N

we can do exactly the set of manipulations from the lecture using Stirling :

S = ln Ω ≈ N lnN −
(
N

2
+
L

2a

)
ln

(
N

2
+
L

2a

)
−
(
N

2
− L

2a

)
ln

(
N

2
− L

2a

)
and taylor expanding the logarithms. To make the comparison with lecture more

explicit, let ε ≡ L
2a

; this is exactly the deviation from the mean n↓ = N
2

+ ε = 〈n↓〉+ ε.

Again there are many cancellations:

S ≈ N lnN −
(
N

2
+ ε

)
ln

(
N

2
+ ε

)
−
(
N

2
− ε
)

ln

(
N

2
− ε
)

S ≈ ε2

2N

(
1 +O

( ε
N

))
= − L2

2Na

(
1 +O

(
L

Na

))
I would like to make some remarks. First, the reason that the order-ε terms cancel

is that we are expanding around the maximum of the distribution. The statement that

it is the maximum means that the derivative vanishes there; that derivative is exactly

the linear term in the taylor expansion. Second, the nontrivial statement of the Central

Limit Theorem here is not just that we can Taylor expand the log of the distribution

about the maximum. The nontrivial statement is that the terms of higher order than

ε2 become small as N →∞. It is crucial here that the terms we are neglecting go like
ε3

N2 .

(c) Find the temperature T of the chain when the length is L.

1

T
=
dS

dE
=
dS/dL

dE/dL
=
− 2L
a2N

+O
(

L2

a2N2

)
−mg

(15.1)

(d) Find the length of the chain in terms of T . Show that the length of the chain is

proportional to the gravitational force mg for a fixed T and a small force. This means

that the chain acts like a harmonic oscillator, i.e. satisfies Hooke’s law, despite the fact

that there is no mechanical restoring force.
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For small mg and hence small L, we can just keep the leading term in (22.1)

L ≈ a2N

T
mg

So Newton’s law here is:

mg ≈ khookeL

where the spring constant is khooke = Ta2N .

16 Comment on limits of integration

Many probability distributions (e.g. in pset 4 problem 1) are defined to be zero outside

of some specified range. When manipulating these distributions (e.g. when convolving

them) one must not forget this.

17 Warmup problem

Consider the locus

S ≡ {(x1, x2, x3) ∈ R3|0 = F (x1, x2, x3)}

where the function F is

F (x1, x2, x3) = x2
1 + x2

2 + x2
3 − a2.

0) What is the dimension of this locus?

1) Draw it.

2) For x1, x2, x3 ∈ S, i.e. restricted to the surface, compute

∂x1

∂x2

|x3
∂x2

∂x3

|x1
∂x3

∂x1

|x2

The surface can be expressed as

x1 = x1(x2, x3) = ±
√
a2 − x2

2 − x2
3

with similar expressions interchanging 1, 2, 3. Note that there are three choices of sign,

which describe points in the 23 = 8 octants of R3. For simplicity, let’s take a point in

the octant where x1,2,3 > 0. Then we have

∂x1

∂x2

|x3 =
1

2

−2x2√
a2 − x2

2 − x2
3

= −x2

x1
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∂x2

∂x3

|x1 =
1

2

−2x3√
a2 − x2

3 − x2
1

= −x3

x2

∂x3

∂x1

|x2 =
1

2

−2x1√
a2 − x2

1 − x2
2

= −x1

x3

So the product is

∂x1

∂x2

|x3
∂x2

∂x3

|x1
∂x3

∂x1

|x2 = (−1)3x2

x1

x3

x2

x1

x3

= −1.

Figure 10: The locus S for a = 1

18 Relations among response functions

[Adkins, page 12 discusses the case of n = 3]

Consider n variables satisfying one constraint

0 = F (x1, ..., xn), (18.1)

so that n−1 of them are independent. This specifies a locus in the n-dimensional space

whose dimension is n− 1. We can write n different equations imposing the constraint

x1 = x1(x2...xn), x2 = x2(x1, x3...xn), ..., xn = xn(x1...xn−1),

each of which encodes the same information about the shape of this (n−1)-dimensional

space. (In the case of n = 3, then, (18.1) specifies a surface in three dimensions.) Note

that not all of these functions will be single-valued – a simple example is the case

x2
1 = x2, in which there are two values of x1 = ±√x2 for each value of x2 (for x2 > 0,
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or no real values if x2 < 0). The relations we study below are true locally, i.e. pick a

branch of solutions and stick with it.

The variation of any given variable as we move along the constraint surface can be

expressed in terms of the variations of the others:

dx1 =
∑
j 6=1

∂x1

∂xj
|xl 6=1,j

dxj (18.2)

dx2 =
∑
j 6=2

∂x2

∂xj
|xl 6=1,j

dxj (18.3)

Note that you can actually ignore the annoying |xl 6=1,j
bits here– they always express

that all the other variables are fixed besides the two that are involved in the derivative.

So I’m going to suppress them here to make the equations look better – you have to

remember that they are there. Now substitute in (18.2) using (18.3) for dx2:

dx1 =
∑
j 6=1,2

∂x1

∂xj
dxj +

∂x1

∂x2

(∑
j 6=1,2

∂x2

∂xj
dxj +

∂x2

∂x1

dx1

)

Now we group terms together:

0 = dx1

(
−1 +

∂x1

∂x2

∂x2

∂x1

)
+
∑
j 6=1,2

(
∂x1

∂xj
+
∂x1

∂x2

∂x2

∂xj

)

Now since we can vary x1 and x3, x4...xn independently, this is actually n − 1

equations. Varying only x1 we learn that:

−1 +
∂x1

∂x2

∂x2

∂x1

i.e.
∂x1

∂x2

|all others fixed =
1

∂x2
∂x1
|all others fixed

Since 1, 2 aren’t special, we have

∂xi
∂xj
|all others fixed =

1
∂xj
∂xi
|all others fixed

(18.4)

for any distinct i, j. This is sometimes called the “reciprocal theorem”.

Varying any of the xj with j = 3..n, we learn that:

∀j 6= 1, 2, − 1 =
∂x1

∂x2

∂x2

∂xj

∂xj
∂x1
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Realizing that there isn’t anything special about x1, x2, this says:

− 1 =
∂xi
∂xj

∂xj
∂xk

∂xk
∂xi

(18.5)

for any i, j, k distinct. Note that the RHS is dimensionless because each of xi,j,k appears

once in the top and once in the bottom. This is sometimes called the “reciprocity

theorem”.

18.1 Comparison to 1d chain rule

Let’s go back to the case of three variables for simplicity, and call them (x1, x2, x3) =

(x, y, z) If we combine this last relation (18.5) with the reciprocal relation (18.4), we

have
∂y

∂x
= −∂y

∂z

∂z

∂x
.

This way of writing (18.5) makes the minus sign seem to conflict with the chain rule in

single-variable calculus, dY
dX

= dY
dZ

dZ
dX

. There is actually no conflict, because the latter

formula applies to a different situation, namely where X, Y, Z each determine each

other, i.e. we have two independent relations X = X(Y ) AND Y = Y (Z) among the

three variables (which specifies a curve in space, rather than a surface).

But this makes the sign hard to remember.

18.2 An even simpler example

To check that this funny-seeming sign is really there, let’s do a simple example. Take

0 = F (x, y, z) = x+ y + z.

Then

x(y, z) = −y − z, y(x, z) = −x− z, z(x, y) = −x− y
∂x

∂y
= −1,

∂y

∂z
= −1,

∂z

∂x
= −1

So indeed their product is
∂x

∂y

∂y

∂z

∂z

∂x
= −1.
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19 Exact differentials and second derivatives

I don’t have much to add here beyond Adkin’s discussion on pages 14-15, except the

following.

1) Beware that if x = x(y, z) is a multi-valued function, trouble can arise in Adkins’

argument. If the two paths end up on different branches of the function, the results

need not agree. The mixed partials only disagree at the branch point.

2) The condition that

Fxdx+ Fydy

is an exact differential, namely that

∂yFx − ∂xFy = 0

is a condition familiar from other contexts (e.g. electricity and magnetism) as the

condition that the 2d vector field ~F ≡ Fxx̂+ Fyŷ be curl-free,

~∇× ~F = 0. (19.1)

That is in turn equivalent (at least in flat space with no holes) to the condition that it

be someone’s gradient
~F = ~∇f = x̂∂xf + ŷ∂yf.

This is the statement that

Fxdx+ Fydy = df.

The condition (19.1) also says that line integrals of ~F are path-independent:∫ 2

1

(Fxdx+ Fydy) = f(2)− f(1),

and integrals over closed loops vanish∮
(Fxdx+ Fydy) = 0.

20 1d chain: entropic forces (another application of

the binomial distribution and its gaussian peak),

part 1

Here is another application of the manipulations Krishna did in lecture on Wednesday

Feb. 23, 2011, exhibiting the gaussian nature of the binomial distribution at large N .
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[From 8.08 pset 1] This problem also has some conceptual overlap with problem 7 of

pset 4.

Consider a flexible chain of N links of length a. Each link can point up or down.

Later on, we will attach a ball of mass m to the end of the chain. Every configuration

of the chain has the same energy, except for the gravitational energy associated with

the height of the ball.

(a) How many configurations of the chain produce a net length L? Call it Ω(L).

Let n↑ and n↓ denote the number of links which point up or down.

L

a
= n↑ − n↓ = 2n↓ −N

We used the fact that the total number of links is N = n↑ + n↓. So: n↓(L) = L/a+N
2

.

The counting of configurations is the same as in coin flipping or as in the random

walk in one dimension.

Ω(L) =

(
N

n↓(L)

)
=

N !(
N+L/a

2

)
!
(
N−L/a

2

)
!

Note that the length with the maximum number of configurations is L = 0. If we

ignored the force from the mass, the most probable configuration would be L = 0.

(b) What is the probability distribution for L? Use the Central Limit Theorem.

The information about the probability distribution for L is contained in the previous

calculation of the number of configurations, since

p(L) =
Ω(L)

2N

i.e. p(L) is the number of configurations where the length of the chain is L divided by

the total number of configurations of a chain of length N , namely 2N .

Having already done this the hard way by actually counting configurations, let’s

redo it the easy way using the Central Limit Theorem. This theorem implies that the

sum of N SI RVs X ≡
∑N

i=1 xi is governed by a Gaussian probability distribution. This

fact is extremely useful because a Gaussian distribution is determined by its mean and

its variance, and we know those for X, namely

〈X〉 = N 〈x〉 , Var(X) = NVar(x).

5 That is, we can figure out the mean and variance for X in terms of the mean and

variance in the case of N = 1 where there is just one variable, which is in general easy.

5To recap,

〈X〉 = 〈x1 + ...+ xN 〉 = 〈x1〉+ .. 〈xN 〉
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If there were only one link of the chain, N = 1, the mean value of L would be zero

and the variance would be

VarN=1(L) =
〈
L2
〉
N=1
− 〈L〉2N=1 =

1

2
a2 +

1

2
a2 = a2.

So the CLT says

p(L) =
1√

2πNVar(x)
e−

(L−N〈x〉)2
2NVar(x) =

1√
2πNa2

e−
L2

2Na2

Note that this equals sign really means “can be well represented by” since the values

of L that are actually achieved are integer multiples of a; for large N , this spacing

becomes negligible compared to the width of the envelope ∼
√
Na.

Next time we will think about the consequences of this if we hang a mass on the

chain and it is in thermal equilibrium.

no matter whether the xi are SI, just because taking expectations is a linear operation. If the xi are

also identically distributed, this is 〈X〉 = N 〈x〉.

Var(X) =
〈
X2
〉
− 〈X〉2 .

〈
X2
〉

=

〈
N∑
i=1

x2i + 2
∑
i<j

〈xixj〉

〉
.

There are N terms of the first kind, and 1
2N(N − 1) terms of the second kind, each of which is of the

form 〈x1x2〉 = 〈x1〉 〈x2〉 by the SI assumption. So, assuming the xi are iid,〈
X2
〉

= n
〈
x2
〉

+ n(n− 1) 〈x〉2

and

Var(X) =
〈
X2
〉
− 〈X〉2 = n

〈
x2
〉

+ n(n− 1) 〈x〉2 − (n 〈x〉)2 = nVar(X).

Here are two quick applications of these results:

1) Random walk in one dimension: The average endpoint after N steps is 〈X〉 = N 〈x〉 = 0, but the

spread of the distribution of the endpoint after N steps is

Var(X) = N
〈
x2
〉

= NL2

where L is the step length. This says that the RMS displacement from the origin is
√

Var(X) =
√
NL;

if we imagine each step takes a time t0, the RMS displacement after time t satisfies

∆x(t) =

√
t

t0
L

which is characteristic of diffusion.

2) In doing an experiment, why is it a good idea to take many measurements and average the result?

We have Var(
∑
i xi) = NVar(x). The average of the results is x̄ ≡ 1

N

∑N
i=1 xi; since the variance

satisfies Var(ay + b) = a2Var(y), we have Var(x̄) = 1√
N

Var(x), so the statistical error in the average

shrinks (compared to the statistical error in one measurement) as N grows. Note that t his says

nothing about systematic errors.
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21 Warmup problem: exact and inexact differen-

tials

[from Greiner, Thermodynamics and Statistical Mechanics]

Suppose someone gives you a differential

F = ~F · d~x = Fx(x, y)dx+ Fy(x, y)dy

which is not exact (F 6= df), such as

~F · d~x = yxdx+ x2dy, (21.1)

as you can see by computing

∂yFx 6= ∂xFy.

Sometimes it is possible to find another differential proportional to the original one

which is exact, i.e. there exists g(x, y) such that

gF = df. (21.2)

In fact there can be many possible g, which is naturally called an “integrating factor”.

Let’s find one such g for the example (21.1).

The desideratum (21.2) implies that gF is closed, i.e.

∂x(gFy) = ∂y(gFx).

Given F , this is a PDE for g. For our special case, it is

∂x(gx
2) = ∂y(gxy)

which says

g + x∂xg = y∂yg.

It can be solved by separation of variables: g = g1(x)g2(y), which gives

g1g2 + xg′1g2 = yg1g
′
2

1 + x
∂xg1(x)

g1(x)
= y

∂yg2(y)

g2(y)
= C.

Since the LHS depends only on x and the RHS depends only on y, the BHS is a

constant, C. The solution of

y
∂yg2(y)

g2(y)
= C
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is ln g2 = C ln y + C2, for a constant C2 or

g2 = eC2yC .

Similarly

1 + x
∂xg1(x)

g1(x)
= C

is solved by g1 = eC1xC−1. But we only care about the product g1g2, and we just need

one solution of this equation, so let’s set C1 = C2 = C = 0, and we have

g(x, y) = xC−1yC =
1

x
.

Indeed
1

x
F = ydx+ xdy = d(xy + a)

(where a is some constant) is exact. And so is

(xy)C

x
F = (xy)C (ydx+ xdy) = d

(xy)C+1

C + 1

for any C.

I mention this point because we’ve seen that work is not an exact differential, that

is d̄W depends on what process we do. On the other hand, for a ‘hydrostatic system’,

i.e. a fluid in a container, we have

d̄W = PdV

where dV is certainly an exact differential – it is the change in the volume of the system

and the volume is a state variable. So here

d̄W

P
= dV

is exact.

Similarly, heat d̄Q is not exact. Soon we will see that it can also be written as a

state function times an exact differential:

d̄Q = TdS.

A challenge: try to come up with an example of a differential for which this proce-

dure cannot be done. You may need more independent variables.
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22 1d chain: entropic forces (another application of

the binomial distribution and its gaussian peak)

Here is another application of the manipulations Krishna did in lecture on Wednesday

Feb. 23, 2011, exhibiting the gaussian nature of the binomial distribution at large N .

[From 8.08 pset 1; it also makes an appearance on 8.044 pset 5b. This problem also

has some conceptual overlap with problem 7 of pset 4.] Note that I am giving here a

taste of things to come and violating a bit the injunction against talking about macro

and micro perspectives at the same time. Please be aware of this and forgive me.

Consider a flexible chain of N links of length a. Each link can point up or down.

A ball of mass m is attached to the end of the chain. Every configuration of the chain

has the same energy, except for the gravitational energy associated with the height of

the ball.

(a) How many configurations of the chain produce a net length L? Call it Ω(L).

[Recall that on Tuesday, March 1, 2011, we discussed p(L), where p and Ω are related

by

p(L) =
Ω(L)

2N
=
eS(L)

2N
,

as an application of the CLT. Note that we needn’t worry too much about the (N -

dependent) constant in front because it is specified by normalizing the distribution∑
L p(L) = 1 anyway.]

Let n↑ and n↓ denote the number of links which point up or down.

L

a
= n↑ − n↓ = 2n↓ −N

We used the fact that the total number of links is N = n↑ + n↓. So: n↓(L) = L/a+N
2

.

The counting of configurations is the same as in coin flipping or as in the random

walk in one dimension.

Ω(L) =

(
N

n↓(L)

)
=

N !(
N+L/a

2

)
!
(
N−L/a

2

)
!

Note that the length with the maximum number of configurations is L = 0. If we

ignored the force from the mass, the most probable configuration would be L = 0.

(b) Find the entropy of the chain when the length of the chain is L. What happens

in the (most likely) limit L� Na?

S = kB ln Ω.
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I will work in units where kB = 1 for the rest of this discussion. In the limit L/a� N

we can do exactly the set of manipulations from the lecture using Stirling :

S = ln Ω ≈ N lnN −
(
N

2
+
L

2a

)
ln

(
N

2
+
L

2a

)
−
(
N

2
− L

2a

)
ln

(
N

2
− L

2a

)
and taylor expanding the logarithms. To make the comparison with lecture more

explicit, let ε ≡ L
2a

; this is exactly the deviation from the mean n↓ = N
2

+ ε = 〈n↓〉+ ε.

Again there are many cancellations:

S ≈ N lnN −
(
N

2
+ ε

)
ln

(
N

2
+ ε

)
−
(
N

2
− ε
)

ln

(
N

2
− ε
)

S ≈ −2ε2

N

(
1 +O

( ε
N

))
= − L2

2Na

(
1 +O

(
L

Na

))
I would like to make some remarks. First, the reason that the order-ε terms cancel

is that we are expanding around the maximum of the distribution. The statement that

it is the maximum means that the derivative vanishes there; that derivative is exactly

the linear term in the taylor expansion. Second, the nontrivial statement of the Central

Limit Theorem here is not just that we can Taylor expand the log of the distribution

about the maximum. The nontrivial statement is that the terms of higher order than

ε2 become small as N →∞. It is crucial here that the terms we are neglecting go like
ε3

N2 .

(c) Find the energy of the chain when the length of the chain is L.

E = −mgL

up to an additive constant which will not matter.

(d) Assuming thermal equilibrium, find the temperature T of the chain when the

length is L.

Here we will cheat a little and use a formula that we saw briefly in the preview

chapter of this course:

1

T
=
dS

dE
=
dS/dL

dE/dL
=
− L
a2N

+O
(

L2

a2N2

)
−mg

(22.1)

(d) Find the length of the chain in terms of T . Show that the length of the chain is

proportional to the gravitational force mg for a fixed T and a small force. This means

that the chain acts like a harmonic oscillator, i.e. satisfies Hooke’s law, despite the fact

that there is no mechanical restoring force.
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For small mg and hence small L, we can just keep the leading term in (22.1)

L ≈ a2N

2T
mg

So Newton’s law here is:

mg ≈ khookeL

where the spring constant is khooke = 2T
a2N

.

Note that the fact that the force about equilibrium is linear in the extent of the

chain is not surprising – this is just the statement that it has a Taylor expansion; the

real consequence of having a large chain of length N (making the CLT relevant) is that

the ‘anharmonic terms’ (i.e. the terms in the force that go like L2 and higher powers)

are suppressed by powers of N .

To recap, I had several purposes in discussing this example:

• It’s an opportunity to apply the CLT, along the same lines as in pset 4.

• It describes a physical situation similar to the one discussed from a thermody-

namic viewpoint in the last problem of pset 4.

• The discussion of microscopic counting of configurations of the chain was an

opportunity to emphasize the significant steps in the derivation of the statement

that the binomial distribution becomes gaussian at large N .

• This is an example of an ‘entropic force’: the restoring force on the chain arises

exclusively from the fact that the entropy is larger when it is not stretched.

23 Adiabats and entropy: a review problem

Given the equation of state of a hydrostatic system P = P (V, T ), and the internal

energy U = U(T, V ), let’s find the entropy of the system S(T, V ). Two examples

which are relevant to our present purposes (recent lectures, pset 5a, review for the

exam on Friday) where we can be more specific are

a) the ideal gas where

ideal gas: PV = NkT, U(V, T ) =
3

2
NkT.

b) the VdW gas where

VdW gas:
(
P +

a

V 2

)
(V − b) = NkT, U(V, T ) =

3

2
NkT − a

V
.
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In general, the first law says

dU =d̄Q+d̄W .

Applied to a hydrostatic system, it is

dU =d̄Q− PdV .

In general, the heat absorbed by our system may be written as

d̄Q = TdS

where S is a state variable called the entropy. I will motivate the claim that the

quantity S so defined is a state variable below in section 23.4.

So we have

TdS = +PdV+dU = PdV+(∂TU |V dT + ∂VU |TdV ) = (P + ∂VU |T ) dV+∂TU |V dT = (P + ∂VU |T ) dV+CV dT.

Dividing this by T , we have an expression for the differential dS:

dS =
1

T
(P + ∂VU |T ) dV +

CV
T
dT (23.1)

(which I claim is exact on general grounds; this claim implies some relation between

∂VCV and T -derivatives of the thing multiplying dV ).

To make further progress, let’s think about the examples.

23.1 Entropy of ideal gas

For the ideal gas, (23.1) becomes:

dS =
1

T

(
NkT

V
+ 0

)
dV +

3

2
NkdT = Nk

dV

V
+

3

2
Nk

dT

T
.

First let’s check that it’s exact:

∂T (∂V S)T = 0 = ∂V (∂TS)V .

I like to integrate such things by picking path of line segments along the coordinate

axes, starting from some arbitrary point. Let’s move from (T0, V0) to (T, V0) and then

to (T, V ). This gives

S(T, V ) = S(T0, V0) +

∫ T

T0

dT ′ (∂TS(T ′, V0))V +

∫ V

V0

dV ′ (∂V S(T, V ′))T
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= S(T0, V0)+

∫ T

T0

dT ′
3

2

Nk

T ′
+

∫ V

V0

dV ′
Nk

V ′
= S(T0, V0)+Nk

(
3

2
ln
T

T0

+ ln
V

V0

)
= const+Nk lnT 3/2V.

We can and should check that indeed

S(T, V ) = const +Nk lnT 3/2V (23.2)

reproduces the expression for dS above. I derive some enjoyment from the fact that

(23.2) is sometimes called ‘the Sackur-Tetrode equation’.

Notice that along an adiabat,d̄Q = TdS = 0, entropy is constant. This is consistent

with our previous information that PV γ = const, since here γ = CP
CV

= 5/3 so

T 3/2V = const ⇔ (PV )3/2V = const ⇔ P 3V 5 = const = const ⇔ PV 5/3 = const.

In the second step we used the ideal gas equation of state.

23.2 Entropy of VdW gas

Now we have

VdW gas:
(
P +

a

V 2

)
(V − b) = NkT, U(V, T ) =

3

2
NkT − a

V
.

The constant b reduces the volume available to the particles because of the fact that

they repel each other at very small separations. So (23.1) becomes:

dS =
1

T

[(
NkT

V − b
− a

V 2
+

a

V 2

)
dV + cNkdT

]
=

(
Nk

V − b

)
dV +

cNk

T
dT.

First check equality of mixed partials:

∂T (∂V S)T = 0 = ∂V (∂TS)V ;

both are still zero.

Following the same path as before,

S(T, V ) = S(T0, V0) +

∫ T

T0

dT ′ (∂TS(T ′, V0))V +

∫ V

V0

dV ′ (∂V S(T, V ′))T

= S(T0, V0) +

∫ T

T0

dT ′
cNk

T ′
+

∫ V

V0

dV ′
Nk

V ′ − b
= const +Nk lnT c(V − b)

This differs from the ideal expression above in two ways. First, the exponent T 3/2

became T c; this is not because the gas is not ideal, but just because I called the

constant specific heat here CV = ∂TU |V = cNk instead of 3
2
Nk as above; a non-

monatomic ideal gas can indeed have other values of c. The second difference is the

appearance of b; this means that it is

T c(V − b) ∝ eS

which is constant along an adiabat for a VdW gas.
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23.3 Carnot cycle in T, S plane

[problem 3 from 8.044 S2009 First Test]

Recall that the Carnot cycle takes a substance through a sequence of four quasistatic

processes, forming a closed loop, and alternating between isotherms and adiabats.

Draw the Carnot cycle in the TS (temperature-entropy) plane.

S

T
T

T

SS

h

c

12

Figure 11: A Carnot cycle in the temperature-entropy plane.

The heat put into the engine during the whole cycle is

∆Qtotal =

∮
TdS ;

the adiabats do not contribute to this integral (even for non-ideal gases).

∆Qtotal =

∮
TdS = ∆QTh + ∆QTc

This integral is extremely easy to do for the Carnot cycle – it is the area of the rectangle

in figure ??:

∆Qtotal = Th(S1 − S2) + Tc(S2 − S1) = (Th − Tc)(S1 − S2).

The sign is correct when the cycle is traversed in the indicated direction. In that case

(which is when the engine does work on its surroundings, ∆Wtotal < 0), ∆Qtotal is

positive because Th > Tc, S1 > S2.
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For the ideal gas S = a lnT 3/2V for a positive constant a; this means that the

adiabat with larger V has higher entropy.

The fact that the process makes a cycle means that

0 = ∆U = ∆Wtotal + ∆Qtotal = −
∮
PdV +

∮
TdS

Note that for an ideal gas, the contribution from the isotherms to
∮

(−PdV + TdS)

vanishes, since the internal energy is constant when T is constant.

23.4 Motivating entropy as a state variable

[Reichl, page 26]

So far we’ve just assumed the relation d̄Q = TdS, and claimed that S is a state

variable. Krishna is going to derive this from statistical mechanics. The following is

one way to see just from thermodynamic considerations that entropy is a state variable,

i.e. that dS = d̄Q
T

is an exact differential.

In a Carnot cycle,

0 = ∆Utotal = ∆Qtotal + ∆Wtotal.

The efficiency is

η ≡ ∆Wtotal

∆Qhot

=
∆Qhot + ∆Qcold

∆Qhot

= 1 +
∆Qcold

∆Qhot

On the other hand, we have shown that η = 1− Tc
Th

, so we have

0 =
∆Qhot

Th
+

∆Qcold

Tc
=

∮
carnot

d̄Q

T
.

In the last step we used again the fact that no heat is exchanged during the adiabatic

steps.

On the other hand, one can make an arbitrary reversible cycle out of lots of little

Carnot cycles. This means that

0 =

∮
any reversible quasistatic cycle

d̄Q

T

in general, which means d̄Q
T

is exact.
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24 Cooling a fluid: some exercises using the first

law

[big Reif (Fundamentals of Statistical and Thermal Physics), §5.9, 5.10; Greiner, chap-

ter 4]

Last time we talked briefly about adiabatic free expansion of a gas. We noticed

that an ideal gas does not change its temperature in this process.

24.1 Joule-Thomson Throttling

In practice, a better way to cool fluids (which is used to liquefy gases) is the following

procedure introduced by Joule and Thomson (= Lord Kelvin). This procedure also

has the advantage of avoiding the intermediate unspeakable non-equilibrium situation.

The idea is to set up a steady flow of gas down an insulating pipe. In the path of

the gas is a porous plug, which maintains a pressure differential. On the left, upstream

side we have P1, T1, on the right we have P2 and we’d like to know T2.

Consider a fixed mass of gas between two points A,B along the pipe. As the chunk

moves, it does work on the gas downstream of it, and it gets work done on it by the

gas upstream of it. Think about the work done on this chunk of gas between the time

right as it is about to enter the plug and the time right after it has all left the plug.

Initially it has volume V1, and the gas upstream of it is doing work at pressure P1 to

decrease this volume to zero; this is an amount of work P1V1 on the gas. The chunk

itself does work against a pressure P2 on the right to produce a final volume of V2,

which is work −P2V2 done ON the gas. The net work done on this chunk is

W = −P2V2 + P1V1.

On the other hand, no heat is absorbed because we have assumed steady state and

insulating walls. So the first law says

0 = Qinto gas = ∆Uof gas −Won gas.

Note the signs (and note that Reif uses the opposite convention, using W to mean the

work done by the gas). The change in the internal energy is

∆U = U2 − U1 = U(T2, P2)− U(T1, P1).

So

∆U = ∆(PV )
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or

U1 + P1V1 = U2 + P2V2 i.e. H1 = H2

where H ≡ U + PV is the enthalpy.

Again for an ideal gas this is boring since

H = U + PV = U(T ) +NkT

depends only on T so H(T2) = H(T1) just says the temperature is constant and nothing

happens. So again we need some interactions in our gas to get an effect. The effect we

want is a change in T as we change the pressure, i.e. a nonzero value of the “Joule-

Thomson coefficient”

µ ≡ ∂T

∂P
|H .

µ > 0 (µ < 0) means the gas cools (warms) as we decrease the pressure P2 < P1.

Let’s find a useful expression for µ. Recall that

dU =d̄Q− PdV −→ dH = d(U + PV ) =d̄Q+ V dP.

Thinking of H = H(T, P ) as function of the independent variables T, P , we have

dH =
∂H

∂T
|PdT +

∂H

∂P
|TdP.

At constant enthalpy, we set this to zero and learn

µ =
∂T

∂P
|H = −

∂H
∂P
|T

∂H
∂T
|P
.

We’ve seen in lecture that the thing in the denominator is

CP =
∂H

∂T
|P

the specific heat at constant pressure.

We’ll have to work on the numerator some more to relate it to familiar quantities.

This will be much easier a little later in the course, so we will come back to it.

25 Comments on pset 5b, problem 2: Rückhardt’s

experiment

In recitation, we discussed this problem using Newton’s Law.
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Part d) says that we neglected the temperature variation in the earlier parts of

the problem. We may not have discussed the temperature variation explicitly, but

indeed the temperature must vary. To see this, note that when the ball is at the lowest

point of its oscillation, the energy is stored in the internal energy of the gas. Because

we are discussing an ideal gas, the internal energy only depends on T , not directly

on the volume V . The temperature, however, depends on z: when we adiabatically

compress the gas, its internal energy increases via an increase in temperature – the gas

molecules move faster. In part d) you will show that this crucial temperature variation

is nevertheless numerically not very significant.

The problem can actually be solved using conservation of energy. The total poten-

tial energy, as a function of the height of the ball (this does not include kinetic energy

of the ball) is:

U(z) = −mgz + Ugas(T (z)) = −mgz + cNkT (z).

Here c is a constant, which is 3/2 for a monatomic ideal gas. Since the specific heat is

CV = ∂TUgas|V = cNk, and CP = CV + 1, we have

γ =
CP
CV

=
c+ 1

c
=

5

3
.

The temperature can be inferred from the adiabatic relation PV γ = const combined

with the ideal gas law, PV = NkT :

PeqV
γ

eq = P (z)V (z)γ = NkT (z)V (z)γ−1.

here Peq, Veq are the values of the temperature and pressure when the ball is in equi-

librium. Let the equilibrium position of the ball be zeq = 0; then V (z) = Veq + Az.

Therefore:

NkT (z) = PeqV
γ

eqV (z)1−γ.

Therefore

U(z) = mgz + cPeqV
γ

eq (Veq + Az)1−γ .

Equilibrium requires that the net force on the ball vanish; this means

0 = ∂zU(zeq) = mg + (1− γ)cPeqV
γ

eqV
−γ

eq A = mg − PeqA

where we used 1− γ = 1− 5
3

= −2
3
. This agrees with the formula for the equilibrium

pressure given on the statement of the problem set. Away from equilibrium,

mz̈ = −U ′(z) = −
(
U ′(zeq) +

1

2
(z − zeq)U ′′(zeq) + ...

)
which when linearized about equilibrium gives a harmonic oscillator which you can

show has the correct frequency.
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26 S2008 first test, last problem.

Some of you may have tried the first test from 8.044 S2008, which is available on OCW.

The third problem on this exam gives us the heat capacity CV and a relation between

P, V, T for a non-ideal gas, and asks us to find an expression for the internal energy.

I don’t know how to do this problem without using a formula from the formula

sheet of that exam (or equivalent information which we have not yet covered in 8.044).

For those of you who tried this problem, a derivation of the offending formula is

the following. It uses a Maxwell relation, which is a relationship between response

functions valid in equilibrium which we’ll see in a few weeks.

On the one hand, calculus says:

dU = CV dT + ∂VU |TdV.

On the other hand, the first law is

dU = TdS − PdV.

Now expand the differential dS as

dS = ∂T |V dT + ∂V S|TdV

to turn the first law into

dU = T∂TS|V dT + (T∂V |TS − P )dV.

Equating the two resulting expressions for dU we learn: CV = T∂TS|V and

∂VU |T = T∂V |TS − P.

Finally, a Maxwell relation says:

∂V |TS = ∂T |V P.

Therefore:

∂VU |T = T∂T |V P − P.

27 A microcanonical example: Classical magnetic

moments

[8.044 S2003 pset 6 number 1]
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This problem and its solution are available here on OCW.

Note that in this problem, we ignored the kinetic energy of the moments, which

would give an extra contribution to the energy

∆E =
L2

2I

where L is the angular momentum and I is the moment of intertia. This is appropriate

in a limit where I is large.

27.1 Whence the expression for Ω(M,N)?

I will add one more part to the problem:

h) Where did the expression for Ω(M,N) come from?

Notice that the probability of finding a particular magnetization is

P (M,N) =
Ω(M,N)

Ω(N)
∝ e

− (M−〈M〉)2
2σM

where Ω(N) ≡
∑

M Ω(M,N) is a normalization factor, and the variance of M is

σM =
1

3
Nµ2.

M is a sum of N independently-distributed random variables. The fact that the vari-

ance is proportional to N follows from this. The fact that it is proportional to µ2

follows from dimensional analysis. What about the 1/3?

Claim: 〈m2
z〉 = 1

3
µ2. 〈

m2
z

〉
=

1

4πµ2

∫
S2

m2
z

where the integration is over the two-sphere of possible values of the direction of the

moment. 〈
m2
z

〉
=

1

4π

∫
dθdϕ sin θ

(
µ2 cos θ2

)
=

2πµ2

4π

∫ 1

−1

dxx2 =
µ2

3
.

I defined x ≡ cos θ.

27.2 Comment on regime of validity of the answer for p(m)

The answer we find for the probability distribution for one moment (in part (e) of the

problem) is

p(m) =
1

2µ
e

3mM
Nµ2 . (27.1)
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Notice that this is not a normalized probability distribution:∫ µ

−µ
dmp(m) =

1

2µ

Nµ2

3M

(
e

3M
Nµ − e−

3M
Nµ

)
6= 1.

What went wrong?

Just like when we took the temperature too low in part d) and found M > µN , we

went outside the range of validity of the given expression for Ω(M,N). This expression

is a sharply-peaked gaussian in M , centered at M = 0 with a width of order
√
Nµ –

it is overwhelmingly probable that M <
√
Nµ times a few. In this case, the exponent

in (27.1) is small: M ∼
√
Nµ� Nµ and we can Taylor expand and find a normalized

probability distribution.

The gaussian form of the distribution for M is valid near the peak where most

of the probability lies; to understand what happens in the tails, we would need more

information

27.3 Comments about microcanonical assumption for contin-

uous classical distributions

How did I pick the probability distribution for θ, the direction of the moment, above?

In this case, I demanded that no direction was special and this determines the measure

to be the round measure on the sphere.

More generally, the microcanonical hypothesis, i.e. the idea that ”every accessible

microstate should be equally probable” is ambiguous if our microstates are labelled by

continuous variables. If we change variables in our distribution, the notion of ”equally

probable” actually changes. Extra information is required, such as a preferred choice

of variables.

In quantum mechanics, this issue does not arise. Taking a classical limit of a

quantum system gives a preferred choice of variables.

28 Heat pumps and refrigerators

Here’s a strategy for thinking about problems like the last one on pset 6.

1. Draw a diagram indicating where heat can flow.

2. In each of these problems, one is asked to assume that the engine is in steady

state. This means that the temperatures aren’t changing, which means that the power

is conserved at junctions in the diagram. It is analogous to one of the two Kirchoff’s
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laws, where we assume that charge does not pile up and hence the total current going

in to each junction is zero.

3. In each of these problems, we are asked to assume that the engine is ideal,

meaning that it is a Carnot engine, i.e. quasistatic and reversible. This says that the

total entropy change is zero, and gives a relation between the various heats flowing and

the temperatures, of the form

0 = ∆S =
QH

TH
− QC

TC
.

Note that since the engine is cyclic, ratios of powers are the same as ratios of heats:

TH
TC

=
QH

QC

=
QH per cycle

QC per cycle
=
PH
PC

.

29 There is no magic about Maxwell relations

For any state variable in a system with more than one thermodynamic degree of freedom

(e.g. temperature and volume), we can obtain a Maxwell relation by demanding that

its mixed partials be equal. Any smooth function of state variables is also a state

variable, so there are many such relations, not all of which are useful. Don’t try to

memorize them.

To try to free our understanding of Maxwell relations from the notation associated

with hydrostatic systems, let’s do an example of a magnet, where the thermodynamic

variables are the magnetization M , temperature T , entropy S, and external magnetic

field B (note that I’m calling it B instead of H to distinguish it from the enthalpy),

two of which are independent.

Warmup Q: show that

∂BT |S = −∂SM |B

The first law applied to such a system is

dE = TdS +BdM.

Note that this equation is equivalent to the two statements

∂ME|S = B, ∂SE|M = T.

Equating the mixed partials of E gives

∂S|M∂M |SE = ∂S|MB = ∂M |ST .
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This is a correct Maxwell equation, but not the one we asked about.

To change which variables appear, let’s do “a Legendre transformation”; here this

fancy phrase just means consider another state variable which is obtained from E by

adding a product of an intensive variable and an extensive variable:

H ≡ E −BM

(it’s also important that the thing we add have dimensions of energy; one way to

guarantee this is if the two variables are conjugate to each other, in that one is some

generalization of displacement (like V or M) and the other is the corresponding gener-

alized force (like P or B respectively). The name H has no real significance, but I’ve

given it this name to emphasize the similarity with the enthalpy. I chose the sign of

BM to get

dH = TdS −MdB ; (29.1)

if we add BM , we get some more complicated expression which isn’t as useful. H =

H(S,B) is the natural thermodynamic potential to use at fixed S,B. The equation

(29.1) says that

∂SH|B = T, ∂BH|S = −M.

Equating mixed partials of H gives

∂B|S∂S|BH = ∂B|ST = −∂S|BM

which is what we were asked to show.

There are two more nice potentials we can define for this system, which are the

Helmholtz free energy F = E − TS and the analog of the Gibbs free energy G =

E − TS − BM . These give two more Maxwell relations, one of which we will need in

the next problem.

30 More paramagnet

[S2003 pset 7 problem 2]

Suppose we are told that the equation of state of a paramagnet is

M =
AB

T − T0

for A, T0 constants, and this equation is valid only for T > T0. B here is the external

magnetic field.
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a) Show that the heat capacity at fixed M is independent of M at constant T , i.e.

0 = ∂MCM |T .

By definition

CM |T ≡
d̄Q

dT
|M =

TdS

dT
|M .

Since the first law for the magnet is dE = TdS + BdM , at fixed M all the heat goes

into internal energy and this is equal to

CM |T =
dE

dT
|M .

There are several ways to do this problem. Here is one which is slightly different in

detail from the one in the S2003 OCW solution. The question asks about

∂M |TCM = ∂M |T∂T |ME.

Since E is a state variable, the mixed partials have to be equal, so this is

∂M |TCM = ∂T |M∂M |TE.

Now let’s see what we know about ∂M |TE. To think about varying E at fixed T , we

should rewrite the first law as follows:

dE = TdS+BdM = T (∂T |MSdT + ∂M |TSdM)+BdM = T∂T |MSdT+(T∂M |TS +B) dM.

This equation says that the quantity of interest is

∂M |TE = T∂M |TS +B. (30.1)

It also says that ∂T |ME = T∂T |MS, which we knew; this is CM .

We don’t yet know ∂M |TS, though. Here we can use another Maxwell relation. Let

F = E − TS, so dF = −SdT +BdM ,i.e.

∂TF |M = −S, ∂MF |T = B.

The mixed partials of F are

−∂MS|T = ∂TB|M (30.2)

which is the relation we need. Then (30.1) says that

∂M |TE = T∂M |TS +B = −T∂TB|M +B.
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So far this is general. In this problem, we know B(T,M) from the given equation

of state

B(T,M) =
M

A
(T − T0)

so for this system

∂M |TE = −T∂TB|M +B = −M
A
T +

M

A
(T − T0) = −M

A
T0.

Then

∂M |TCM = ∂M |T∂M |TE = ∂M |T
(
−M
A
T0

)
= 0.

b) Find E(T,M) in terms of A, T0, CM(T ). Integrals of CM and unfixed additive

constants are OK.

We already figured out that

dE = T∂T |MSdT + (T∂M |TS +B) dM = CMdT + (−T∂TB|M +B) dM

which for this problem is

dE = CM(T )dT − M

A
T0dM.

Notice that in this differential, the coefficient of dT depends only on T and the coeffi-

cient of dM depends only on M . This makes it easy to integrate because the integral is

then just the sum of a function of M and a function of T – note that this is consistent

with the fact that ∂M |TCM = ∂M |T∂T |ME = 0. That function is

E(T,M) =

∫ T

CM(T ′)dT ′ − M2

2A
T0 + const.

c) Find S(T,M) in terms of A, T0, CM(T ).

Similarly,

dS = ∂MS|TdM + ∂TS|MdT = −∂T |MBdM +
CM
T
dT = −M

A
dM +

CM(T )

T
dT.

In the second step we used again the Maxwell relation (30.2).

This is again easy to integrate:

S(T,M) = −M
2

2A
+

∫ T CM(T ′)

T ′
dT ′ + other const.
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31 Cooling a fluid: an exercise using the first law

and Maxwell relations

[big Reif (Fundamentals of Statistical and Thermal Physics), §5.9, 5.10; Greiner, chap-

ter 4]

A few weeks ago we talked briefly about adiabatic free expansion of a gas. Finally

we can talk about another way to cool a gas. It is an opportunity to use a Maxwell rela-

tion, and a situation where a thermodynamic potential other than energy is physically

relevant.

31.1 Joule-Thomson Throttling

In practice, a better way to cool fluids (which is used to liquefy gases) is the following

procedure introduced by Joule and Thomson (= Lord Kelvin). This procedure also

has the advantage of avoiding the intermediate unspeakable non-equilibrium situation.

The idea is to set up a steady flow of gas down an insulating pipe. In the path of

the gas is a porous plug, which maintains a pressure differential. On the left, upstream

side we have P1, T1, on the right we have P2 and we’d like to know T2.

Consider a fixed mass of gas between two points A,B along the pipe. As the chunk

moves, it does work on the gas downstream of it, and it gets work done on it by the

gas upstream of it. Think about the work done on this chunk of gas between the time

right as it is about to enter the plug and the time right after it has all left the plug.

Initially it has volume V1, and the gas upstream of it is doing work at pressure P1 to

decrease this volume to zero; this is an amount of work P1V1 on the gas. The chunk

itself does work against a pressure P2 on the right to produce a final volume of V2,

which is work −P2V2 done ON the gas. The net work done on this chunk is

W = −P2V2 + P1V1.

On the other hand, no heat is absorbed because we have assumed steady state and

insulating walls. So the first law says

0 = Qinto gas = ∆Uof gas −Won gas.

Note the signs (and note that Reif uses the opposite convention, using W to mean the

work done by the gas). The change in the internal energy is

∆E = E2 − E1 = E(T2, P2)− E(T1, P1).
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So

∆E = ∆(PV )

or

E1 + P1V1 = E2 + P2V2 i.e. H1 = H2

where H ≡ E + PV is the enthalpy.

Again for an ideal gas this is boring since

H = E + PV = E(T ) +NkT

depends only on T so H(T2) = H(T1) just says the temperature is constant and nothing

happens. So again we need some interactions in our gas to get an effect. The effect we

want is a change in T as we change the pressure, i.e. a nonzero value of the “Joule-

Thomson coefficient”

µ ≡ ∂T

∂P
|H .

µ > 0 (µ < 0) means the gas cools (warms) as we decrease the pressure P2 < P1.

Let’s find a useful expression for µ. Recall that

dU =d̄Q− PdV −→ dH = d(E + PV ) =d̄Q+ V dP.

Thinking of H = H(T, P ) as function of the independent variables T, P , we have

dH =
∂H

∂T
|PdT +

∂H

∂P
|TdP.

At constant enthalpy, we set this to zero and learn

µ =
∂T

∂P
|H = −

∂H
∂P
|T

∂H
∂T
|P
.

We’ve seen in lecture that the thing in the denominator is

CP =
∂H

∂T
|P

the specific heat at constant pressure.

Now let’s work on this some more to relate it to familiar quantities. The first law

dE = TdS − PdV and the definition of enthalpy H = E + PV imply that

dH = TdS + V dP = T (∂TS|PdT + ∂PS|TdP ) + V dP = CPdT + (T∂PS|T + V ) dP.

Setting dH = 0, the Joule-Thomson coefficient is then

µ =
∂T

∂P
|H = −T∂PS|T + V

CP
.
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Now we can use a Maxwell relation.

G = E − TS + PV = H − TS, dG = −SdT + V dP = ∂TG|V dT + ∂PG|TdP

so S = −∂TG|V , V = ∂PG|T . So equality of mixed partials, i.e. the fact that G is a

state function, implies

∂PS|T = ∂TV |P = V α

where α is the coefficient of expansion (the second equality here is actually its defini-

tion).

So

µ = −T∂PS|T + V

CP
=

V

CP
(Tα− 1) .

So Joule-Thomson throttling will cool the gas when µ > 0 which happens when α >

1/T , i.e. {α = 1/T} gives the inversion curve.

32 Warmup problem: defects in a solid

[based on S2003 pset 7 number 5]

Consider N independent but distinguishable several-state systems. Let each system

have l0 + l1 states such that ε1 = ε2 = ... = εl0 = 0 and εl0+1 = εl0+2 = ... = εl0+l1 = ∆

for some parameter ∆.

(a) Find the partition function for one such system in equilibrium at temperature

T .

Z1 =

l0+l1∑
α=1

e−βεα = l0 + l1e
−β∆

where β ≡ 1
kBT

.

(b) Find the partition function Z(T,N) of N of them.

Z = ZN
1 .

The fact that they are distinguishable means no N !.

(c) Find the entropy.

F = −kBT lnZ = −kBTN lnZ1

S = −∂TF = kBN lnZ1 +
kBTN

Z1

l1∆(−∂Tβ) = kBN lnZ1 +
kBTN

Z1

l1∆
1

kBT 2
.
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(d) What is the contribution of these things to the entropy at high temperature,

kBT � ∆ ?

At high temperature, the Boltzmann suppression factor which prevents very high-

energy stuff from happening goes to unity:

e−β∆ kBT�∆→ 1

This says that all states are equally likely, independent of their energy, and the partition

function just counts the number of states.

Z1
kBT�∆→ l0 + l1

The average energy of one subsystem is

〈ε〉 =
∑
α

εαPα
kBT�∆→ l1∆

l0 + l1
.

The average energy of N independent subsystems is N times as big,

〈E〉 =
Nl1∆

l0 + l1
.

We can reproduce this answer by finding

E = F + TS =
kBT

2N

Z1

l1∆
1

kBT 2

kBT�∆→ Nl1∆

l0 + l1
.

33 Information and entropy

[from Blundell]

Consider the following three statements:

1. Isaac Newton’s birthday occurs on a particular day of the year.

2. Isaac Newton’s birthday occurs in the first half of the year.

3. Isaac Newton’s birthday occurs on the 25th of a month.

We can agree that they are ordered from least informative to most informative. A

way to quantify the information content of a statement is to notice that a statement

is less informative if the probability that it is true without any prior information is

larger:

P1 = 1, P2 =
1

2
, P3 =

12

365
.
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To figure out how to make the relationship between this prior probability and infor-

mation content more precise let’s consider how to combine independent statements.

Statements 2 and 3 can be independently true or false; we would like to say that the

information content for knowing both is the sum of the individual information contents.

The probabilities on the other hand multiply:

P2 and 3 = P2 · P3 =
6

365
.

A definition of the information content which satisfies this rule of combination was

introduced by Shannon:

Q ≡ −k logP.

k is a positive constant; if k = 1 and log = log2, information is measured in bits, while

if k = kB and log = ln, information has the same units as thermodynamic entropy.

Given a set of statements i to which we can assign probabilities Pi, we have Qi =

−k logPi. Define the Shannon entropy to be the average information content over the

distribution,

S ≡ 〈Q〉 =
∑
i

PiQi = −k
∑
i

Pi logPi.

This quantifies how much information we would gain upon measuring the observable

i, or alternatively how much uncertainty we have before we measure it.

We can associate such an entropy with any probability distribution. For example,

suppose there are two outcomes i = 0, 1 and P0 ≡ p, P1 = 1−p, p ∈ [0, 1], like one step

of a 1d random walk (such a thing is called a Bernoulli process). Then

S = −k(p log p+ (1− p) log(1− p)).

This function vanishes at the two extremes p = 0, 1 where we are sure about the

outcome of measuring i. It has a maximum when p = 1
2

where we are maximally

uncertain about the outcome.

33.1 Entropy and probability

Now we will try to connect to the derivation of the canonical ensemble in problem 4 of

pset 7.

Suppose we have a system which can be in one of several macrostates labelled by a

variable i = 1..., which is easy to measure. Let ni be the number of microstates asso-

ciated with the macrostate i; we should imagine that these microstates are impossible

for us to distinguish. An example to think about is rolling a die where the number
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that ends up on top is i = 1...6; ni the number of ways the die could have tumbled and

ended up with i on top. Let N ≡
∑

i ni be the total number of microstates. Then we

can assign probabilities by counting

Pi =
ni
N

and
∑

i Pi = 1 is automatic.

The total microcanonical entropy if we know nothing about the state of this system

is

Stot = kB lnN.

Because of our ability to distinguish the macrostates i, we can decompose this into two

parts:

Stot = S + Smicro

where S is the thermodynamic entropy associated with not knowing which macrostate

i the system is in, while

Smicro ≡
∑
i

PiSi =
∑
i

PikB log ni

is the entropy associated with not knowing the microstate – Si ≡ kB log ni is just the

usual microcanonical entropy of the macrostate i. Rearranging this gives an expression

for the physical entropy

S = Stot−Smicro = kB

(
logN −

∑
i

Pi log ni

)
= kB

∑
i

Pi (logN − log ni) = −kB
∑
i

Pi logPi.

In the third step we inserted 1 =
∑

i Pi in the first term. This is just the Shannon

entropy of the probability distribution Pi. This expression for the entropy is due to

Gibbs.

Now suppose that we knew nothing at all about physics but were given the follow-

ing assignment: assign probabilities to some set of outcomes labelled by a variable i,

consistent with the constraints

(1)
∑
i

Pi = 1

(2)
∑
i

PiEi = E.

The second constraint says that we know the average energy. There are in general

many ways to assign probabilities satisfying these constraints; our assignment is to do

this in the way that adds the fewest unwarranted assumptions about the system, i.e.
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that adds the least amount of information that we don’t actually have, i.e. that is least

biased.

From the discussion of the previous subsection, we see that the answer to this

problem is to choose the set of Pi which maximizes the Shannon entropy, subject to

the constraints (1) and (2). This will be the probability distribution with the least

information (by Shannon’s definition) consistent with the available data.

To implement this, we can use Lagrange multipliers α, β and extremize

I(Pi, α, β) ≡ S(P )− α

(∑
i

Pi − 1

)
− β

(∑
i

PiEi − E

)
.

Varying with respect to α imposes probability normalization, varying with respect to

β inputs the average energy. Varying with respect to Pi gives

0 = − lnPi + 1− α− βEi

which implies

Pi = e−1−αe−βEi .

Demanding that this be normalized gives

Pi =
e−βEi

Z
.

So we see that in fact the Boltzmann distribution is much more inevitable than

even we would think from pset 7 problem 4. It does not rely on any metaphysics about

equal probabilities for microstates. It is merely the least-biased distribution which we

can assign. This point of view was forcefully advocated by E.T. Jaynes. You may enjoy

his original paper on the subject, here.

34 Warmup problem: Schottky anomaly

Consider a two-state system. The two states are called + and − and have energies ε± =

±∆/2. Compute and sketch the specific heat as a function of temperature. Compute

and sketch the specific heat as a function of temperature for a system comprised of N

distinguishable copies of such a system.

Z1 =
∑
r

e−βεr = e+β∆/2 + e−β∆/2 = 2 cosh

(
β∆

2

)
.

〈ε〉 = −∂β lnZ = −∆

2
tanh

(
β∆

2

)
.
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CV = ∂T 〈ε〉 = kB

(
β∆

2

)2

sech

(
β∆

2

)
.

The specific heat goes to zero at large T and at small T . At large T this is because

both states become equally probable; varying a big temperature doesn’t change any-

thing. At small T this is because the system is frozen into its groundstate, which is

the state called −. The big bump at kBT ∼ ∆ is called the “Schottky anomaly” and is

where all the action is. When the thermal energy kBT is of order the level spacing ∆

then thermal excitations have an order-one probability of exciting transitions; changing

the temperature makes a big difference for the average energy.

For N distinguishable copies, ZN = ZN
1 , and FN = −kBT lnZN = −kBNT lnZ1.

The specific heat and the energy are just EN = N 〈ε〉, N times as big.

35 Comment on derivation of canonical ensemble

from microcanonical ensemble

In lecture Krishna derived the canonical ensemble by considering a subsystem (1) of

a large, but isolated system (1+2). The probability that subsystem (1) is in some

microstate A is the fraction of microstates of the whole system where this is the case:

p ((1) is in a state A with energy E1) =
Ω′

Ω(1+2)(ETOT)
=

1× Ω(2)(ETOT − E1)

Ω(1+2)(ETOT)
.

Then we Taylor expanded the log of p (the log of any function is more smoothly

varying than the function itself and so its Taylor expansion is a better approximation):

Ω2(ETOT − E1) ≈ e−βE1e−S2(ETOT)/kB

where

β =
∂S2(ETOT)

∂ETOT

=
1

kBT

makes its first appearance here. This gives us an expression for the probability pro-

portional to the Boltzmann factor

p ((1) is in state A) =
e−βE1

Z

with
1

Z
= e−(S2(ETOT )+S1+2(ETOT ))/kB .
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So far, this is just a review what happened in lecture. Next we made the assumption

that (1) is also macroscopic. It is the role of this assumption that I want to clarify.

This led us to write

STOT(ETOT) = S1(〈E1〉) + S2(〈E2〉);

I want to explain in more detail how this follows. It is an opportunity to explain a

useful technique for approximating a certain class of integrals.

First, we have

eSTOT(ETOT) = Ω1+2(ETOT) =

∫ ETOT

0

dE1Ω1(E1)Ω2(ETOT − E1).

The first step here is the microcanonical definition of entropy. The second step follows

because we assume that systems (1) and (2) are independent but able to exchange

energy. This means that the energy of system (1) is not fixed, and we must sum over

its values (if we were treating the system quantum mechanically, it would really be a

sum not an integral; let’s leave this refinement for another time). This is∫ ETOT

0

dE1Ω1(E1)Ω2(ETOT − E1) =

∫ ETOT

0

dE1e
(S1(E1)+S2(ETOT−E1))/kB .

Now, if (1) and (2) are both macroscopic, then each of these entropies in the exponent

of the integrand are of the form S(E) = Ns(E) where N is a big number related to the

number of degrees of freedom, and s is some intensive function; this follows because

the entropy is extensive. So our integral is something like

I =

∫ ETOT

0

dE1e
Ns(E1). (35.1)
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Figure 18: top: f(x) = (x2−1)− 1
2x

3

bottom: e−Nf(x) with N = 10.

Aside: The Saddle Point Method

Consider an integral of the form above

I =

∫
dxe−Nf(x)

where N � 1 is a big number and f(x) is a smooth

function. As you can see from the example in the

figure (whereN is only 10), e−Nf(x) is hugely peaked

around the absolute minimum of f(x), which I’ll

call x0. We can get a good approximation to the

integral by just considering a region near x = x0,

and Taylor expanding f(x) about this point:

f(x) = f(x0) +
1

2
(x− x0)2f ′′(x0) + ...

where there’s no linear term since x0 is a critical

point, and we assume a minimum f ′′(x0) > 0. It

is also important that x = x0 is in the range of

integration. Then

I =

∫
dxe−Nf(x) ≈

∫
dxe−N(f(x0)+ 1

2
(x−x0)2f ′′(x0)+...)

= e−Nf(x0)

∫
dye−

N
2
f ′′(x0)y2+... ≈ e−Nf(x0)

√
2π

Nf ′′(x0)
.

The important bit is that the integral is well-approximated

by e−Nf(x0), i.e. just plugging in the value at the

critical point. (Actually, for values of N as small as

I’ve chosen in the example, the bit with the f ′′ is

important for numerical accuracy; for the example

in the figure, including this factor, the saddle point

method gives
∫ 2

−2
dxe−Nf(x) = 206.7, while numer-

ical integration gives 209.3. Without the gaussian

integral correction, saddle point gives 816.6. For

values of N ∼ 1024 we can just keep the leading

term.)
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Applying this technique to the integral above (35.1) the condition for the saddle

point is

0 =
∂s(E1)

∂E1

=
∂

∂E1

(S1(E1) + S2(ETOT − E1) =
1

T1

− 1

T2

.

The saddle point condition says that the temperatures of the two systems should be

equal. This determines the value of E1 to be the thermal equilibrium value at the

temperature of the bath 1
T

= ∂E2S2. Plugging in the saddle point approximation to

the E1 integral then, we have

Ω1+2(ETOT) = e(S1(〈E1〉)+S2(〈E2〉))/kB

as desired.

36 Quantum ideal gas of distinguishable particles

Consider a system where the states are labelled by three positive integers,

nx, ny, nz = 1, 2, 3, 4....∞

and the energies of the states are

εnx,ny ,nz = ε0
(
n2
x + n2

y + n2
z

)
.

This is realized by a particle of mass m in a cubical box of side length L; in that

case ε0 = h2

8mL2 . For our purposes, this merely a cultural remark.

The partition function for such a system in thermal equilibrium at temperature T

is

Z1 =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

e−βε0(n
2
x+n2

y+n2
z) =

(
∞∑
n=1

e−βε0n
2

)3

.

The sum here is not so simple; in fact it is a function called a Jacobi theta function. We

will make progress by considering the high-temperature and low-temperature limits.

36.1 High temperature

The only energy scale in the system is ε0, so by high temperature I mean kBT � ε0. In

this limit, the sum over ns is dominated by large n: the particles are in highly-excited

states. For this part of the sum, the values of successive terms in the sum are not very

different, and we can make a good approximation

∞∑
n=1

e−βε0n
2 ≈

∫ ∞
0

dne−βε0n
2

=
1

2

∫ ∞
−∞

dne−βε0n
2

=
1

2

√
π

βε0
.
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So we have

Z1

βε0�1
≈ V

h3

(
2πm

β

)3/2

which is in fact the classical ideal gas partition function,

Z1 (βε0 � 1) ≈ V

h3

(
2πm

β

)3/2

=

∫
d3pd3x

h3
e−βp

2/2m.

36.2 Aside about variance of energy

We know that 〈ε〉 = −∂β lnZ. I claim that the quantity (−∂β)2 lnZ is also interesting

for several reasons.

On the one hand, it is proportional to the specific heat:

(−∂β)2 lnZ = −∂β 〈ε〉 = −kBT 2CV .

On the other hand,

(−∂β)2 lnZ = −∂β
(∑

r εre
−βεr

Z

)
=

∑
r ε

2
re
−βεr

Z
−
(∑

r εre
−βεr

Z

)2

=
〈
ε2
〉
−〈ε〉2 = ∆E2

it is the variance of the energy.

Suppose we have a system which is N distinguishable copies of a smaller system

(e.g. N distinguishable non-interacting quantum particles). Then

Z = ZN
1 , lnZ = N lnZ1.

Using our expressions above and differentiating lnZ,

〈E〉 = N 〈ε〉 , ∆E2 = N∆ε2.

So the relative fluctuations of the energy of the big system are

〈E〉
∆E

=
N 〈ε〉√
N∆ε

∝ 1√
N

N→∞→ 0.

This is what makes it OK to just plug in the equilibrium value of the energy and not

worry about statistical fluctuations for macroscopic systems6 in thermal equilibrium.

6at least ones composed of non-interacting subsystems
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36.3 Low temperature

When the thermal energy kBT is of order the level spacing ε0, we can no longer approx-

imate the sum as an integral, because successive terms will be quite different. Let’s

think about extreme low temperatures βε0 →∞.

What is the average energy of the quantum particle in a box when the temperature

is zero? At T = 0 the system is in its groundstate. In this particular case, this is

nx = ny = nz = 1, so εgs = 3ε0. Therefore

〈ε〉 (T = 0) = 3ε0.

Let’s figure out the leading correction to this in ε0
kBT

. For very small T , the partition

function is

Z1 = e−β3ε0 + 3e−β6ε0 + ...

where the first term is the groundstate contribution, the second term is from the

first excited state, and higher excited states give even more exponentially-suppressed

contributions. The first excited state is when two of the ns are 1 and one is 2; the 3 in

the second term is from the three ways to do this; the energy of the first excited state

is

ε1st excited state = ε0
(
1 + 1 + 22

)
= 6ε0.

This expression for the partition function is simply a Taylor expansion in the small

quantity e−βε0 . The average energy is then

〈ε〉 (kBT � ε0) ≈ 3ε0P (ground state) + 6ε0P (1st excited state) + ...

= 3ε0
e−β3ε0

e−β3ε0 + small
+ 6ε0

3e−β6ε0

e−β3ε0 + small
+ small

〈ε〉 (kBT � ε0) ≈ 3ε0 + 18ε0e
−β3ε0 + small.

The role of the fancy theta function is to interpolate between this answer at low

temperatures and the ideal gas 3
2
kBT behavior at high temperatures.

37 Entropy of blackbody radiation and a puzzle

[based on Baierlein section 6.4]

Here is an apparent paradox. 3.5 billion years ago the only life on earth was a

bunch of bacteria. Surely there are more microstates of the atoms making up our
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planet where there are only bacteria than where there are humans and civilization and

physicists. So it seems the entropy of our planet has decreased,

∆Searth = Searth(now)− Searth(bacteria times) < 0.

Does this violate the second law of thermodynamics? No, not obviously, because

the Earth is not an isolated system.

In particular, energy is being pumped in via light from the sun at temperature TS,

and pumped out via thermal radiation of the earth itself, which we can very roughly

regard for this purpose as being in thermal equilibrium at temperature TE. Demanding

that the situation is static tells us that the energy per time going in had better equal

the energy per time going out,

0 = aT 4
S − bT 4

E

and this relates the temperature of the sun and of the earth via some geometric factors

(which I’ve called a, b here) as on pset 9.

What is the entropy budget?

37.1 Entropy of blackbody radiation

The entropy of a volume V of radiation at temperature T is

Srad(T, V ).

We figured this out in lecture using the microcanonical ensemble, but here is a way to

remember the answer without calculation.

The entropy divided by kB is dimensionless; it’s the log of a number. And it depends

only on T, V and a bunch of constants of nature, specifically ~, c, kB. We can choose

to work in units where these constants are equal to one. This means that they can’t

be combined to make dimensionless combinations on their own. So we have to find a

dimensionless combination x of T and V using these constants, and then the entropy

can be any function of x. I claim that a good choice of x is

x = kBT
V 1/3

~c
.

The first factor kBT is an energy. Evidence that

[
~c
V 1/3

] = energy
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is that ~
V 1/3 has units of momentum, and momentum times velocity is an energy (recall

E = pc for photons). So the entropy only depends on V and T in the combination

V T 3:

Srad(T, V ) = S(V T 3).

But we know that entropy is extensive, and the only extensive thing in sight is the

volume, so

S ∝ V

which implies

S = cstV T 3

for some constant cst.

This tells us the shape of adiabats for thermal radiation just using dimensional

analysis and extensivity of the entropy.

37.2 The history of the earth is consistent with thermody-

namics

The entropy change of the earth from the thermal photons arriving and leaving is then

of the form

aT 3
S − bT 3

E.

This is a negative number: the entropy of a chunk of thermal radiation with energy E

at temperature TS is smaller than a chunk with the same energy but a lower temper-

ature TE. A way to understand this is that the entropy of such a chunk of radiation is

proportional to the number of photons. I’ll justify this claim further in the next recita-

tion. Basically, the microstates of the radiation are specified by what the photons are

doing; a larger entropy means we have to specify the data for more photons.

This explains the inequality above: Higher-temperature radiation has a higher peak

frequency; since the energy of a photon is proportional to its frequency, each of the

photons having more energy (with fixed total energy) means fewer photons.

38 “Quietly emitting thermal radiation” ?

I’d like to pose a puzzle raised by an offhand phrase used by Krishna in lecture last week.

He described a hot object as sitting somewhere “quietly emitting thermal radiation”.

This raises the question: if the body is immersed in air, does it not also excite thermal

sound radiation? Can you hear a hot object?
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Here’s a wrong calculation that suggests that a hot object should create a deafening

roar of thermal acoustic radiation. Two differences between light and sound (in a fluid

like air) are:

(1) light has two (transverse) polarizations, while sound in air has only one (longitu-

dinal) mode per wavevector, as I’ll describe further below.

(2) Light moves at the speed of light c = 3 · 108m/s while sound in air moves at the

speed of sound in air, cs ∼ 3 · 102m/s. (There is a third most important difference

that I’ll elide for now and let you think about it.) Recall that the energy flux in EM

radiation from a body of temperature T is

Plight

A
=

4σSB
c

T 4 =
π2k4

B

15c3~3
T 4

Making the replacements above, the energy flux in sound radiation from a body of

temperature T might be

Psound

A
?
=

1

2

π2k4
B

15c3
s~3

T 4 =
1

2

(
c

cs

)3
Plight

A
∼ 1018Plight

A
.

This is wrong. Hint: what would be the peak wavelength of the acoustic radiation?

38.1 Hydrodynamic description

As an example let’s talk more about how to describe fluctuations of the density of a

fluid like air. The field variable will be

ρ(t, ~r) ≡ the density of air− N

V
;

where I’ve subtracted off the average density, ρaverage = N/V . If the density doesn’t

vary too rapidly in time and space, the energy of any configuration is

H[ρ] =

∫
space

d3rκ

(
ρ̇2 + c2

s

(
~∇ρ
)2
)

+ ...

Here κ is a constant which gets the dimensions right; cs will be the speed of sound. The

.... represent terms that we will neglect; this includes terms more nonlinear in ρ, like ρ3

which we can neglect if the deviations from the mean density are small. It also includes

terms involving more derivatives of ρ which we neglect because of our assumption that

variations are slow.

Since the energy density here is translation invariant, it is useful to do Fourier

decomposition. This means we expand our function ρ(~r) in a basis of Fourier modes:

ρ(~r, t) =
∑
~k

a~k(t)e
i~k·~r. (38.1)
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Here a is for ‘amplitude’. The density of air is a real variable; the RHS here is not

manifestly so. If we find a complex solution of the equations of motion, its real part

will be a solution too since the equation will be linear (this will become even more

evident below). Plugging this into the energy expression gives:

H[ρ =
∑

ake
ikr] =

∫
space

d3rκ
∑
k1,k2

(
ȧk1 ȧk2 + c2

s(i
~k1 · i~k2)ak1ak2

)
ei(

~k1+~k2)·~r

= κ̃
∑
k

(
ȧ2
k + c2

s
~k2a2

k

)
In the last step we used ∫

dx eikx = 2πδ(k)

three times.

This is sum of harmonic oscillator hamiltonians, one for each value of k, whose

oscillation frequency is

ω~k = cs|~k|.

38.2 Density of states

Above I’ve written
∑

k without being very specific about what the sum was over. In

detail, this depends on choosing boundary conditions. My job here is to convince you

that most interesting questions about thermodynamics do not depend on this choice.

The simplest thing, which we’ve done for the EM field in lecture, is to imagine that

the box has walls and the field has to vanish at the walls, say

ρ(x = 0, y, z, t) = 0 and ρ(x = L, y, z, t) = 0 for all z, y, t.

For the moment let’s just completely ignore y, z. In this case we are force to choose

the phases in our Fourier decomposition so that each mode vanishes at x = 0 (note

that this is true mode by mode because the condition holds for all time and the modes

have different frequencies):

ρ =
∑
k

ak sin kxx.

Note that only kx > 0 labels different states now because sin(−kxx) = − sin kxx is just

the same mode with a different value of ak. Then the condition at x = L constrains

the wavenumbers:

0 = sin kxL↔ kxL = nπ, n = 1, 2, 3....
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The same thing happens for y, z:

ρ =
∑
~k

a~k sin kxx sin kyy sin kzz,

with

kx,y,z =
nx,y,zπ

L
, nx,y,z = 1, 2, 3....

If we are allowed to squint at the space of wavevectors, we can count them by

doing integrals. If we ask questions where only a few wavenumbers contribute, this

analysis will not be sufficient. This will happen for example if the temperature is too

small, where the meaning too small we can figure out by dimensional analysis: we

mean compared to an energy scale set by the length of the box. As is the discussion

of entropy of blackbody radiation to get an energy using a length and fundamental

constants, we take ~c
L
. So ‘low temperature’ here means

kBT <
~c
L
.

If the temperature is above this value, the coarse-graining procedure here is fine, and

the results are independent of boundary conditions, as we’ll see in a moment.

So

D(k)dk ≡ the number of modes whose wavenumber has a magnitude in the range [k, k + dk]

=
volume of one octant of a shell of radius k and thickness dk

volume of k-space occupied by each mode

=
1
8
4πk2dk

(π/L)3
.

Note that so far what we’ve done to determine D(k) depends not at all on how the

energy modes depends on k (except to figure out the range of temperatures where we

can squint at the wavenumber space). The relation between frequency and wavenumber

is called the ‘dispersion relation’ of the modes.

38.3 Enter the dispersion relation

The density of states in energy is defined by

D(ω)dω = D(k)dk.
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Multiplying by the window of energy it’s exactly the same quantity we defined above,

but the size of the energy window given a fixed wavenumber window is determined by

the dispersion relation. So:

D(ω) = D(k)
1

|dω
dk
|
.

Here D(k) we computed above (e.g. for longitudinal modes in 3d), and the derivative

in the denominator is easy to find given ω(k).

38.4 Periodic boundary conditions

Suppose instead of hard walls of the box we just make space periodic in each direction

with period L. This is a box with no walls (!). What I mean is demand that

ρ(x+ L, y, z, t) = ρ(x, y, z, t) for all x, y, z, t.

and similarly for shifting y, z. Each direction of space is a circle (the three directions to-

gether comprise a three-torus, denoted T 3); going too far in the +x direction you come

back to where you started from the other side. This is a very convenient theoretical

device but a bit hard to implement in the lab.

This condition imposes the following relation on our Fourier decomposition (38.1):

eikx(x+L) = eikxx

i.e.

eikxL = 1

i.e.

kxL = 2πnx, nx ∈ Z.

Note two things about this:

(1) the spacing between allowed wavenumbers is twice as big as before.

(2) negative wavenumbers are no longer redundant; if you like we are now allowed to

have both sines and cosines in our series, so there are twice as many modes for each

fixed |kx|.

This happens in each dimension. The volume in k-space occupied by each mode

is 23 times as big, but the total volume of the set of modes in the shell of radius k

and thickness dk is 23 times as big because we keep the whole shell not just the first

octant. The density of states is therefore the same as it was with Dirichlet boundary

conditions at the walls.

In retrospect at least it’s obvious that this had to be so for large wavenumbers:

imagine you are a small creature (of size � L) far from the walls of the box. Surely
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you don’t care about what the boundary conditions are. The density of modes of the

field that you see should be independent of the choice of boundary conditions.

39 Warmup problem: number of photons

Show that the number of photons in a region of empty space of volume V , held at

temperature T is

N (V, T ) ≡
∑

modes,~k

〈
n~k
〉

= I 1

π2
V

(
kBT

~c

)3

where

I ≡
∫ ∞

0

x2dx

ex − 1
= 2.404.

Note that we are thinking of the average harmonic-oscillator occupation number〈
n~k
〉

as the number of photons with momentum ~k.

N (V, T ) =

∫ ∞
0

dωD(ω) 〈nω〉

〈nω〉 =
1

~ω

〈
εω −

1

2
~ω
〉

=
∞∑
n=0

pnn

=
∑
n

ne−β~ω(n+ 1
2

)

Z
= ∂a

(
1

1− e−a

)
|a=β~ωe

−β~ω/2
(

e−β~ω/2

1− e−β~ω

)−1

=
1

eβ~ω − 1
.

N (V, T ) =

∫ ∞
0

dωD(ω)
1

eβ~ω − 1
=

∫ ∞
0

2

(
1

2

L3

π2

ω2

c3

)
1

eβ~ω − 1
=
V

π2

(
kBT

~c

)3

I = stuffV T 3,

where the stuff is numbers and fundamental constants.

Recall that the entropy is of the same form. In fact:

S = kB3.602N .

39.1 A better proof relating entropy to occupation numbers

For a single harmonic oscillator (think of it as a particular mode of a (bosonic) field

with frequency ω), show that:

S = kB ((〈n〉+ 1) ln (〈n〉+ 1)− 〈n〉 ln 〈n〉)
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with

〈n〉 =
1

eβ~ω − 1

is the occupation number expectation.

FSHO = −kT lnZ = −kT ln
e−β~ω/2

1− e−β~ω
=

1

2
~ω − kT ln

1

1− e−β~ω
.

The first term is independent of T so won’t matter when we differentiate with respect

to T to get

S

kB
= − 1

kB
∂TF |V = ln

1

1− e−β~ω
− β∂β ln

1

1− e−β~ω
= ln

1

1− e−β~ω
− (−1)3β~ωe−β~ω

1− e−β~ω
.

Now note that 〈n〉 has some weird but elementary properties:

〈n〉+ 1 = 〈n+ 1〉 =
1

e−β~ω
.

〈n〉+ 1

〈n〉
= eβ~ω.

ln

(
〈n〉+ 1

〈n〉

)
= β~ω.

Using these we have

S

kB
= ln (〈n〉+ 1) + 〈n〉 ln

(
〈n〉+ 1

〈n〉

)
= (〈n〉+ 1) ln (〈n〉+ 1)− 〈n〉 ln 〈n〉 .

Note that this formula for the entropy appears on pset 10.

40 Pressure of photon gas

a) Show that

P = −∂VU |S.

b) Use this to show that for a photon gas in a cavity of volume V ,

P = −
∑
k

(
〈nk〉+

1

2

)
~
dωk
dV

.

k here is a sum over modes in the cavity.

Note that this relies on the fact that the occupation numbers determine the entropy;

since we want to fix the entropy, they don’t get hit by the derivative.
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c) Show that
dωk
dV

= − ωk
3V

.

Use the fact that

ωk = c|~k| = c

√
(nxπ/L)2 + ... =

πc

V 1/3

√
n2
x + ....

d) Conclude that

P = +
1

3

∑
k

(
〈nk〉+

1

2

)
~ωk

1

V
=

1

3

U

V
+ P0.

Here P0 is an additional zero-point pressure, coming from the sum over vacuum energies

of the mode oscillators, which seems to be infinite. It in fact depends on the size of the

box, and this dependence leads to Casimir forces which are measurable. (The simplest

realization of this with real walls requires the walls to be conducting, and depends on

some details of the interactions between the radiation and the walls, but this effect

would also arise for periodic boundary conditions where there are no walls.)

41 Adsorption: an application of chemical poten-

tial

Let’s consider a simple model of the condensation of vapor on the walls of its container;

such a process where particles get stuck on the boundaries of their container is called

adsorption.

Consider a volume V of vapor, composed of N classical particles, which has a

boundary of area A. Each particle can be in the bulk of the volume, where its energy

is

εbulk =
~p2

2m
≡
p2
x + p2

y + p2
z

2m
.

Alternatively, if they want, they can stick to the walls. The word ‘stick’ is implemented

by an energy gain of ε0 when they are on the wall; however, on the wall they can only

move in two of the three dimensions. For the part of the wall whose normal is the z

direction, the 1-particle Hamiltonian is:

εwall =
p2
x + p2

y

2m
− ε0.

There is a similar expression for the other walls; we will not worry about corners,

i.e. we’ll take the walls of the container to be a big featureless plane. Note that we
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suppose that they can still move around freely on the wall; this will not be such a great

approximation for all examples of walls and gases.

Q: if we hold the whole container in thermal equilibrium at temperature T , what’s

the vapor pressure? If there were no opportunity to stick to the walls, this would be

just the ideal gas pressure,

P =
N

V
kBT.

In the problem at hand, the pressure should be decreased, since the total number of

particles on the wall Nw plus the number in the bulk Nb is fixed to sum to N . The

vapor is still an ideal gas but with fewer particles, so

P =
Nw

V
kBT

where Nw will depend on N, V,A, ε0, and it is our job here to determine it.

Equilibrium occurs when the chemical potential for the particles on the walls equals

that of the particles in the bulk:

µwall = µbulk.

Why is this? Well, the canonical partition sum is

Z =
N∑

Nw=0

Zwall(Nw)Zbulk(N −Nw)

=
∑
Nw

e−β(Fwall(Nw)+Fbulk(N−Nw))

≈ e−β(Fwall(〈Nw〉)+Fbulk(N−〈Nw〉)) (41.1)

where in the last step we did the sum over Nw by saddle point, and 〈Nw〉 is determined

by the saddle point condition

0 = ∂Nw |T,V (Fwall(Nw) + Fbulk(N −Nw)) |Nw=〈Nw〉

= ∂Nw |T,V Fwall(Nw)− ∂Nb|T,V Fbulk(Nb)|Nw=〈Nw〉,Nb=N−Nw .

See my notes from section on 04.07.2011 for a discussion of the saddle-point method.

The large number which justifies its use here is the total number of particles.

So we’ll need to evaluate the chemical potentials for each of the constituent systems.

For the vapor, this is just the chemical potential for an ideal gas in three dimensions,

which we did in lecture:

µvapor = ∂Nb |V,TFbulk = ∂Nb|V,T

(
−kBT

ZNb
1,bulk

Nb!

)

84



= −kBT ln
V

Nbλ3
th

(41.2)

For the stuff on the walls, the partition function is Zwall =
ZNw1,wall

Nw!
where the 1-

particle partition function on the wall is

Z1,wall =

∫
d2pd2x

h2
e−

β
2m(p2x+p2y)+βε0 = A

(√
2πm

βh2

)2

eβε0 =
A

λ2
th

eβε0 .

So the chemical potential for the wall stuff is

µwall = ∂NwFwall|A,T = ∂Nw |A,T

(
−kBT ln

(
ZNw

1,wall

Nw!

))
≈ −kT ln

A

Nwλ2
th

− ε0.

Equating these two chemical potentials and exponentiating, we get

A

Nwλ2
th

eβε0 =
V

Nbλ3
th

or
Nb

V
=

Nw

Aλth
e−βε0 .

Now we must input the fact that the total number of particles is N , so this is an

equation for Nb
Nb

V
=
N −Nb

Aλth
e−βε0

whose solution is a bit ugly

Nb =
V Ne−βε0

Aλth + V
.

So the vapor pressure is

P =
Nb

V
kBT.

42 Another chemical potential example: liquid-vapor

equilibrium

Say that the volume of a liquid made of Nliq particles is Vliq = v0Nliq; v0 is the volume

occupied by each particle in the liquid phase. Assume also that liquid particles enjoy

some binding energy ε0 that is absent if they are in the gaseous state. Compute the

vapor pressure of a liquid in equilibrium with its own vapor, which we assume to be

an ideal gas.
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Set the chemical potentials equal: µliq = µvapor.

The answer I get is

Pvapor =
Ngas

Vgas
kBT =

kBT

v0e
e
− ε
kBT .

If Vliq is significant compared to Vgas we should include the fact that the volume

available for the gas decreases, i.e. Vgas = V −Vliq which will affect the answer for Ngas

and hence the pressure.

43 Air

43.1 Law of isothermal atmospheres from canonical ensemble

Here let’s give yet another perspective on the density of air as a function of height.

Assume that the air is an ideal gas, with constant temperature T and assume that

the gravitational potential experienced by one air molecule is U(x, y, z) = mgz, i.e. we

are not so high that the curvature of the Earth matters, and m is the mass of an air

molecule. We’d like to find the number density of air n(z) = N/V as a function of

height directly from the canonical ensemble.

Consider

p(z)dz = prob(a molecule has height ∈ (z, z + dz)).

Claim:
p(z)

p(0)
=
n(z)

n(0)
.

The fact that the gas is assumed to be ideal means that we can compute the

probability for one atom at a time. For a single atom we have

p(z)dz =
dz
∫
dxdydpxdpydpz e

−βε(~p,z)∫
dzdxdydpxdpydpz e−βε(~p,z)

where ε = ~p2

2m
+mgz. Most of the stuff cancels:

p(z)dz =
e−βmgzdz∫∞

0
dze−βmgz

=
e−βmgzdz

ζ
;

The denominator ζ is a constant which will cancel in ratios. So

p(z)

p(0)
=
e−βmgz/ζ

e−βmg0/ζ
= e−βmgz =⇒ n(z) = n(0)e−βmgz.
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43.2 Sound in air and adiabatic density variations

[Blundells §3.1]

The raging controversy of whether the physics of air is adiabatic versus isothermal

continues in the study of sound propagation.

I claim that the velocity of sound in air is

vs =

√
B

ρ

where ρ = nm is the mass density, representing the inertia of a chunk of air, and

B ≡ −V ∂P
∂V

(43.1)

is a compressibility representing some kind of restoring force to squishing the air. Note

that since a pressure increase will decrease the volume, this quantity B is positive so

vs is real. Note that it B is also

B = ρ
∂P

∂ρ
. (43.2)

This formula for the speed of sound I’ll derive below. But what should we hold

fixed when we take the derivative in (43.1)? Holding T fixed is what we would do

if we thought that the temperature of the air was able to equilibrate rapidly on the

timescale of the oscillations of the density involved in the soundwave. If heat doesn’t

get conducted that quickly then we should hold the entropy fixed. We can talk more

about what’s fast enough later.

Here’s the derivation of the speed of sound. It can be derived from

(1) the continuity equation, i.e. the statement that mass can’t go away, so if the mass

density changes somewhere it’s because some mass left or arrived

−∂tρ = ~∇ · (ρ~u) .

(2) Newton’s law, which in this context is called the Euler equation, and says that a

pressure gradient results in an acceleration:

−~∇p = ρ
D~u

Dt
≡ ∂t~u+

(
~u · ~∇

)
~u.

The funny thing on the right is called a ‘convective derivative’ and I’m not going to

explain it here. The funny second term will be negligible for low-amplitude density

variations. We consider small ripples about an equilibrium configuration where the

density of air is ρ and its velocity is zero.
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And let’s do it in one dimension where things are simple. The continuity says

−∂tρ = ∂x(ρu) = u∂xρ+ ρ∂xu

Define s ≡ δρ
ρ

which is the small fractional deviation of the density. Then we have

u∂xs+ ∂xu = −∂ts.

The first term on the LHS is a product of two small things and so we ignore it. We

have

∂xu = −∂ts. (43.3)

Euler’s equation then says

∂tu = −1

ρ
∂xp = −B

ρ
∂xs

where we used (43.2).

Finally, eliminate u from these equations using (43.3):

∂t(∂xu) = ∂x

(
−B
ρ
∂xs

)
which says, again ignoring terms quadratic in small things,

∂2
t s =

B

ρ
∂2
xs

which is the wave equation with the advertised speed. (If you don’t believe me, plug

in s ∝ ei(kx−ωt) and see what relation you get between ω and k.)

44 Pressure of quantum gases

a) Show that

P = −∂VU |S.

This follows from the first law dU = TdS − PdV.

b) Use this to show that for an ideal quantum gas (e.g. thermal radiation) in a

cavity of volume V ,

P = −
∑
k

(
〈nk〉+

1

2

)
~
dωk
dV

. (44.1)

k here is a sum over modes in the cavity. Here 〈nk〉 is the occupation number of the

mode with wavenumber k; its for is determined by whether the particles in the gas are

fermions

〈nk〉 =
1

eβ(ε(k)−µ) + 1
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or bosons

〈nk〉 =
1

eβ(ε(k)−µ) − 1

or maxwell-boltzmons.

〈nk〉 = e−β(ε(k)−µ).

Note that the dependence on k arises only through the dependence on the single-

particle energy ε(k).

The result (44.1) relies on the fact that the occupation numbers determine the

entropy; we showed this last week for a single harmonic oscillator, but this is in fact a

general statement: the occupation numbers specify the state. Since we want to fix the

entropy, they don’t get hit by the derivative7.

c) Show that for ultra-relativistic particles

dωk
dV

= − ωk
3V

.

Use the fact that

ωk = c|~k| = c

√
(nxπ/L)2 + ... =

πc

V 1/3

√
n2
x + ....

d) Conclude that

P = +
1

3

∑
k

(
〈nk〉+

1

2

)
~ωk

1

V
=

1

3

U

V
+ P0.

Here P0 is an additional zero-point pressure, coming from the sum over vacuum energies

of the mode oscillators, which seems to be infinite. It in fact depends on the size of the

box, and this dependence leads to Casimir forces which are measurable. (The simplest

realization of this with real walls requires the walls to be conducting, and depends on

some details of the interactions between the radiation and the walls, but this effect

would also arise for periodic boundary conditions where there are no walls. Note that

we must subtract off an infinite vacuum energy density to get a finite answer for the

pressure.)

e) Show that for quantum gas of non-relativistic particles (εk = p2

2m
= ~2k2

2m
),

P =
2

3

U

V
.

7 For a better argument see the notes from May 12, 2011, page 1. (§47)
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45 Johnson-Nyquist noise of an electrical circuit at

finite temperature

Consider a driven electrical circuit which is at temperature T – it is difficult to prevent

circuit elements from getting hot. Thermal fluctuations will cause the current through

the circuit to vary from the value one would calculate using Ohm’s law. Can we

quantify this?

To be a little more precise, let’s suppose we have to conductors, each of resistance

R connected in series, with no battery or anything. The thermal motion of the charges

in one resistor will cause a current to flow in the other, which is I = V
2R

, where V is

the EMF created by the thermal motion.

Here is a trick (due to Nyquist, whose 1928 paper is posted on Dave Litster’s site)

which makes finding the fluctuations of the EMF 〈V 2〉 into an application of thermal

radiation. We take a detour to discuss blackbody radiation in one dimension.

45.1 Thermal radiation in one dimension

Consider EM waves confined to propagate in only one dimension, as in a transmission

line or waveguide (think coaxial cylinders) of length L. There are still two polarizations.

Assume that the boundary conditions at the two ends demand that the amplitude

vanish at x = 0, L. (This is the case if the circuit elements to which the transmission

line is attached are impedance matched.) Then the allowed wavenumbers are k =
nπ
L
, n = 1, 2.... Therefore

D(k)dk =
number of dots

volume in k-space occupied by a dot
=

dk

L/π
=
L

π
dk.

As usual for photons, ω = ck, so the density of states in frequency is determined

by

D(k)dk =
Ldω

πc
= D(ω)dω .

The energy per unit length in the transmission line in thermal equilibrium is

U

L
=

1

L

∫ ∞
0

dωD(ω) 〈ε(ω)〉 =
1

L

∫ ∞
0

L

πc

~ω
eβ~ω − 1

.

The energy per unit length in frequencies between ω and ω + dω is then

dU(ω)

L
=

~ω
πc

1

eβ~ω − 1
.
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Now these standing waves in the transmission line can also be considered as a bunch

of radiation (half of it) traveling to the right at the speed of light superposed with the

same amount of radiation traveling to the left at the speed of light. The energy incident

on the x = L end of the line per unit time (in the given frequency range) is then

c

2

dU(ω)

L
=

~ω
2π

1

eβ~ω − 1

β~ω�1
≈ kBT

2π
dω

where the last step, where we take the high-temperature limit, reproduces classical

equipartition.

45.2 Back to circuit noise

To use what we’ve just learned, consider connecting an impedance-matched transmission

line between the two resistors. I don’t want to get into complications about waveg-

uides here : what this means is that the electromagnetic field has Dirichlet boundary

conditions at the end of the transmission line, as we assumed above.

If this energy is incident on a resistor with resistance R in equilibrium at tempera-

ture T , the power going in and being dissipated is〈
I2R

〉
.

To relate this to the voltage fluctuations, we need to relate the current to the voltage,

which we did above, I = V/2R, so〈
I2R

〉
=

〈
V 2

4R

〉
= P.

We can refine this answer by asking about how much current and voltage there is in

each frequency band8 – the noise voltage is like an AC voltage source. Then we have

P (ν)dν =

〈
V 2

4R

〉
dν

(with ν ≡ ω/2π) and therefore〈
V 2
〉
ω

= R
2

π

~ωdω
eβ~ω − 1

β~ω�1
≈ 4RkBTdν.

This is an example of a very general result called the fluctuation-dissipation theorem

which relates the size of fluctuations in thermal equilibrium (〈V 2〉) to the amount of

dissipation (R).

8 We can argue that the condition of thermal equilibrium between the resistors and the radiation

must be met independently for each frequency as follows. If it weren’t the case, and some frequencies

had more radiation going one way than the other you could put a filter (some inductors and capacitors)

which would block those frequencies and make heat flow between the resistors; since they are at the

same temperature by assumption this would violate the second law.

91



46 Warmup question: entropy and occupation num-

bers

Consider a quantum ideal gas of bosons or fermions in a weird box that has just a

single mode of energy ε. Don’t fix the number of particles. What is the entropy?

In a general, non-weird, box the partition function for a quantum ideal gas is

Z =
∑
states

e−βEstate =
∏

modes, k

∑
nk

e−β
∑
k nkεk .

Here I’ve used the fact that we can enumerate the states of a collection of quantum

identical particles by giving the occupation number of each single-particle mode. (I

also subtracted off the vacuum energy
∑

k
1
2
εk for convenience.)

The sum over nk runs over 0, 1, 2...∞ for bosons, and over 0, 1 for fermions.

For bosons in a cavity with one mode, the partition sum is

ZB =
∞∑
n=0

e−βεn =
1

1− e−βε

– it’s just a single simple harmonic oscillator. I discussed the entropy of an SHO in

the notes previously (on 04.28.2011).

For fermions in the weird cavity,

ZF =
1∑

n=0

e−βεn = 1 + e−βε.

This just a two-state system. The average occupation number is

〈n〉F =

∑1
n=0 ne

−βεn

ZF
=

1

eβε + 1

the Fermi-Dirac distribution with µ = 0. This function satisfies some identities analo-

gous to those for the bose factor:

1− 〈n〉F =
1

1 + e−βε
=

1

ZF
.

ln
1− 〈n〉F
〈n〉F

= βε.

These identities are useful in showing that the entropy of the one-mode Fermi gas

is
sF
kB

= − ((1− 〈n〉F ) ln (1− 〈n〉F ) + 〈n〉F ln 〈n〉F ) .
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Notice that this is of the form

s = −
∑
α

pα ln pα

where α is a sum over possibilities (fermion present or absent) with probability p = 〈n〉F
and 1−p respectively. This is just the Shannon entropy of the probability distribution.

47 Comment about pressure of ideal gases

In a previous recitation I gave an argument that a non-relativistic ideal gas has a

pressure that satisfies

P =
2

3

E

V

(and an ultrarelativistic ideal gas has P = 1
3
E
V

). A better argument than the one I gave

appears in Baierlein (on page 97).

The basic fact which is relevant is that

P =
∑
J

(
−∂EJ
∂V

)
e−βEJ

Z
, (47.1)

where J is a sum over states of the many-body system – i.e. it is a multi-index which

runs over sets of single-particle-state occupation numbers J = {nα} – and

E{nα} =
∑
α

εα.

From this formula, the analysis is just as we discussed before.

The formula (47.1) is true by the following nice argument.

Consider the system in a state J . Expand the volume infinitesimally by dV , while

fixing the state (i.e.the occupation numbers) – in the quantum context, this is what

it means to do something adiabatically. The system exerts a pressure on its walls and

does work. The energy of the state EJ(V ) will decrease. Energy conservation says

0 = dE = (pressure in state J) dV +
∂EJ
dV

dV.

Now average the pressure in state J using the canonical ensemble to get (47.1).
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48 Bose condensation in two dimensions?

Can Bose condensation happen in two dimensions, at nonzero temperature, in the

thermodynamic limit?

This would mean that

N = 〈n1〉+
∑
α≥2

〈nα〉

with a 〈n1〉 = N/b with b a constant which stays finite as N →∞. Here

〈nα〉 =
1

eβ(εα−µ) − 1

is the Bose distribution.

Let’s focus on non-relativistic spin-0 bosons. For convenience let’s fix the zero of

energy so that the groundstate has ε1 = 0. Then

〈n1〉 =
1

e−βµ − 1
=

z

1− z
, z ≡ eβµ;

z is sometimes called the fugacity. BEC would mean

〈n1〉 =
z

1− z
= N/b =⇒ z =

1

1 + b/N
≈ 1− b/N ,

where in the last step we used the fact that b is some number like 2 and N is like a

billion, i.e. going to infinity in the thermodynamic limit.

Our accounting of all the particles then says

N =
z

1− z
+

∫ ∞
0+

D2(ε)dε

eβ(ε−µ) − 1
.

In two dimensions, we have

D2(ε)dε = D2(k)dk =
1
4
2πkdk

(π/L)2
=
L2

2π

m

~2
dε.

In the last step we used the NR dispersion relation

ε =
~2k2

2m
=⇒ dε =

~2

m
kdk.

Notice that the density of states in energy is constant.

So

N =
z

1− z
+
L2m

2π~2

∫ ∞
0+

dε

z−1eβε − 1

94



=
z

1− z
+

L2m

2π~2β

∫ ∞
0+

dx

z−1ex − 1

= ≡ z

1− z
+

L2m

2π~2β
I2(z). (48.1)

I2(z) =

∫ ∞
0+

dx

z−1ex − 1
=

∫ ∞
0+

dxze−x

1− ze−x
=

∫ ∞
0+

∞∑
l=1

(
ze−x

)l
where we used a

1−a =
∑∞

l=1 a
l

I2(z) =
∞∑
l=1

zl
∫ ∞

0+
e−lx =

∞∑
l=1

zl

l
= − ln (1− z) .

Diving by N , the accounting is now

1 =
1

b
+

m

2π~2β

L2

N
I2(z)

=
1

b
− m

2π~2
kBT

L2

N
ln (1− z)

=
1

b
+

m

2π~2
kBT

L2

N
ln (N/b) (48.2)

But the second term on the RHS goes to infinity when we take N large while fixing

the density N/L2. The excited states can accommodate an arbitrarily large number of

the particles.

Notice that if we take T = 0 from the beginning indeed all the particles sit in the

groundstate, 〈n1〉 = N, b = 1.

The fact that there is no Bose condensation in 2d and the fact that there are

no solids in 2d are not completely unrelated. In both cases the failure is by some

logarithmic (i.e. very slowly growing) divergence, so each of these things are in fact

approximately possible in practice. But more fundamentally, each of them involves

correlations over very long distances. Despite our familiarity with them, a solid is

actually a very shockingly weird thing: if you know the position of an atom at one end,

you can make a pretty good prediction for the position of an atom all the way at the

other end of the object. Such a state is said to have long range order. Similarly, in a

Bose condensate, all of the particles have the same wave function and so the shape of

the wavefunction relates the behavior of things that are far apart. Two dimensions is

not a hospitable environment for long range order because of the growth of fluctuations.
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Figure 12: From Reif.
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Figure 13: From Reif.
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Figure 14: From Reif.
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Figure 15: From Reif.
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Figure 16: The Shannon entropy for the Bernoulli (two-outcome) process with probability p.
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Figure 17: Specific heat of a two-state system as a function of temperature.
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Figure 19: The energy interpolates between the quantum groundstate energy at T = 0 and the

linear-T ideal gas behavior at high temperature.

100


