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Thermal radiation (a.k.a “blackbody” radiation) is the answer to the following simple
question:

What is the state of the electromagnetic (EM) field in equilibrium with its surroundings at
temperature T?

It is what happens when you heat up empty space.

observe radiation coming out
cut a hole in the box,

thermal radiation
in cavity

body at temperature T

3 (equivalent) viewpoints:

1. As a particular thermodynamic system (This is §7.1).

2. Via normal mode solutions to Maxwell’s equations in the cavity are standing EM waves.
In §7.2, we will do stat mech from this starting point.

3. As a gas of photons (subsequently, and in Chapter 9 this will be our viewpoint).

We’re going to try to figure out:

u(ν, T )dν ≡ energy of thermal radiation with ν ≤ frequency ≤ ν + dν

unit volume

in thermal equilibrium at temperature T . Here ν (‘nu’) indicates the frequency of the EM
radiation. u is called the “spectral energy density”.

[u] =
energy

vol · frequency
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To begin, here are some observed facts about thermal radiation (which we’ll come to un-
derstand):

• u(ν, T ) is independent of the cavity shape and the wall material. The walls of the
cavity play the role of the heat bath, keeping the EM field at temperature T .

• The radiation is isotropic and unpolarized.

• The shape of u(ν, T ) looks like this:

Shown are T = 1 and T = 1.5. 1

At T = TRoom, νpeak ∼ 1013Hz (λpeak ∼ 50µm) is in the IR (not visible).

[End of Lecture 18.]

1in some units with ~ = 1 = c; the energy density and the frequency are both measured in units of the
temperature.

7-3



7.1 Thermodynamics of blackbody (thermal) radiation

First: How far can we go with just macroscopic (i.e. thermodynamic) arguments?

Relate energy density u to energy flux.

detector,

cavity,
filled with
thermal
radiationwith area A

∆E ≡ energy that hits the detector in time ∆t

energy flux ≡ ∆E

A∆t
= power incident on detector ≡ intensity

Calculate ∆E: consider just the radiation with frequency ν and given momentum direction.
(|~p| = hν/c always.)

In time ∆t all the radiation in this cylinder that is mov-
ing in this direction will hit the detector:

Integrate over directions (θ and ϕ):

∆E =

∫ π/2

0︸ ︷︷ ︸
if θ > π/2, we’re outside

dθ

∫ 2π

0

dϕ (energy in cylinder) p(θ, ϕ)︸ ︷︷ ︸
prob that radiation is going in the right dir

=

∫ π/2

0

dθ

∫ 2π

0

dϕ

u · A cos θ︸ ︷︷ ︸
area of slice ⊥ to ~p

· c∆t

 sin θ

4π︸︷︷︸
isotropic radiation

=
cuA∆t

4π

∫ π/2

0

dθ cos θ sin θ︸ ︷︷ ︸
=1/2

∫ 2π

0

dϕ︸ ︷︷ ︸
=2π

.

=⇒ energy flux per unit freq =
1

4
cu(ν, T )

On the LHS is the energy per unit volume per unit frequency, so the units work out.
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Next let’s calculate the
Radiation pressure

pressure =
force

area
=

∆p/∆t

area

pz = |~p| · cos θ
Recall: for a chunk of EM radiation, |~p| = energy/c
For definiteness, assume reflecting walls (doesn’t affect answers).

The change in momentum of the radiation that reflects off the wall in time ∆t:

≡ ∆pz =

∫ π/2

0

dθ

∫ 2π

0

(energy in cylinder) · cos θ

c︸ ︷︷ ︸
momentum normal to wall = cos θ

c
× energy

· 2︸︷︷︸
reflects

· p(θ, ϕ)︸ ︷︷ ︸
as before

.

=
cuA∆t

4π

2

c

∫ π/2

0

dθ cos2 θ sin θ︸ ︷︷ ︸
=1/3

∫ 2π

0

dϕ︸ ︷︷ ︸
=2π

.

=⇒ pressure exerted by radiation with freq ν =
∆pz
A∆t

=
1

3
u(ν, T ) .

7-5



Thermodynamics

That was for each frequency. Now let’s integrate over ν.

P︸︷︷︸
the familiar thermodynamic pressure

=
1

3

∫ ∞
0

dν u(ν, T )

U/V︸︷︷︸
U is the familiar thermodynamic energy

=

∫ ∞
0

dν u(ν, T ) ≡ u(T )

i.e. U = V u(T ), and this is the only V -dependence in u – it’s extensive.2

So, thermal radiation satisfies:

P =
1

3

U

V

(Compare to results on pset for ultra-relativistic gas.)

Thermal radiation is described by P, V, T, U, S... – it is a hydrostatic system.

Remarkably, we can go most of the way toward finding u(T ).

2Actually, the fact that the energy density is independent of V is not clear from what we have said so far.
A simple argument for it relies on the scale invariance of Maxwell’s equations – there is no quantity with
the dimensions of length appearing in Maxwell’s equations. Therefore, when you heat up a patch of empty
space, the only quantity with units of length is the size of the patch of empty space. The energy per unit
volume must be independent of the volume.
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dU = TdS − PdV

=⇒
(
∂U

∂V

)
T︸ ︷︷ ︸

=u(T ),since U=V u

= T

(
∂S

∂V

)
T︸ ︷︷ ︸

=( ∂P∂T )
V

by Maxwell reln

−P

=⇒ u(T ) = T

(
∂P

∂T

)
V

− P

= T

(
1

3

du(T )

dT

)
− 1

3
u(T )

=⇒ 4

3
u(T ) =

T

3

du(T )

dT

=⇒ du

dT
= 4

u

T
=⇒ u(T ) = bT 4

for some constant b. b cannot depend on T or V , or the properties of the cavity. It must be
some constant of nature.

U = bV T 4 P =
b

3
T 4

energy flux, out of a hole in the cavity =
cb

4
T 4.

We’ve determined the pressure and the energy density (i.e. all the thermodynamics) of
thermal radiation, in terms of one constant b. Conventionally:

1

4
cb ≡ σ, Stefan-Boltzmann constant

Next we’ll show that :

σ =
2π5k4

B

15h3c2
=
π2

60

k4
B︸︷︷︸

stat mech

~3︸︷︷︸
QM

c2︸︷︷︸
EM, SR

= 10−8 · 5.67
W

m2K4
.
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Why thermal radiation = “blackbody radiation”?

A body (i.e. a thing of finite size, i.e. a thing) can be
characterized by α(ν, T ), e(ν, T ):

Absorptivity ≡ α(ν, T ) =
energy absorbed

energy incident

Emissivity ≡ e(ν, T ) =
energy radiated

unit time · unit area · unit freq

both defined when the body has temperature T .

Thought experiment: put the body in the cavity we discussed before. Wait long enough
that the cavity, radiation and body are in equilibrium.

In equilibrium, the body emits and absorbs the same
amount of radiation, at each frequency. Else, if the body
were emitting radiation in some frequency more than it
absorbed, the radiation would not be in equilibrium –
the state of the radiation field would be changing. This
is called “detailed balance”.

(?) : Eemitted(ν) = Eabsorbed(ν)

e(ν, T ) · A︸︷︷︸
surface area of body

·∆t = α(ν, T ) · (energy flux hitting body)︸ ︷︷ ︸
1
4
cu(ν,T )

· A ·∆t.

=⇒ e(ν, T )

α(ν, T )
=

1

4
cu(ν, T ) “Kirchoff’s Law”

This is an amazing fact: the LHS has two material properties, each of which varies wildly
with material. The RHS is independent of the material, of the shape, of anything. 3

3 There is a notational issue with Baierlein’s chapter 6: Baierlein uses a nonstandard definition of emis-
sivity, in his (6.33). What Baierlein has done instead is to define:

eBaierlein(ν, T ) = eStandard(ν, T )
1

[u(ν, T )c/4]

which means that for Baierlein, Kirchhoff’s Law (which he states in words right after (6.33)) is:

eBaierlein(ν, T ) = α(ν, T ).

You need to be aware of Baierlein’s nonstandard definition if you compare any equation that has emissivity
in it between Baierlein’s version and the version in my lecture notes.
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Conclusion: a good absorber (at freq ν) is a good emit-
ter (at freq ν).

A perfect absorber≡ “black body” is a body with α(ν, T ) =
1 for all ν, T . Such a body emits radiation with an emit-
ted flux

e(ν, T ) =
1

4
cu(ν, T ) for a blackbody.

But this is the flux out of a little hole in the cavity →

(Note: if the hole is small enough, waves incident from
outside the little hole go in and never come out: so this is
consistent with the statement that the hole has αhole = 1.)

So: thermal radiation is blackbody radiation.

This proves that the size, shape, reflectivity of the cavity
don’t affect the spectrum.

We have determined the energy radiated
unit area·unit time

for any blackbody, in terms of one unknown con-
stant b. To find b, we need stat mech, next.
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7.2 Statistical treatment of thermal radiation

For some of you, this will be your first exposure to quantum field theory.

We want to calculate u(ν, T ) and u(T ) =
∫
dν u(ν, T ).

Consider a cubic cavity. We will build up the answer mode by mode (not point by point).

EM facts [8.02 or 8.03]:
Maxwell’s equations in a cavity have standing wave solu-
tions, e.g.:

Ey(~r, t) = sin kxx× E(t), kx =
mxπ

L

Maxwell’s equations include:

~∇× ~B =
1

c
∂t ~E =⇒ Bz(~r, t) =

1

kxc
Ė(t)︸︷︷︸

so far unknown

cos(kxx)

energy density, u =
1

8π

(
~E2 + ~B2

)
=

1

8π

(
E2 sin2 kxx+

Ė2

(kxc)2
cos2 kxx

)

Hone mode =

∫
vol of cavity

u =
1

2
V︸︷︷︸R

sin2= 1
2
V=

R
cos2

1

8π

(
Ė(t)2

(kxc)2
+ E2(t)

)

The EM dynamics of each mode E is an SHO! HSHO = 1
2
mẋ2+ 1

2
κx2 with ω2 = κ/m; we have

ω2 = (kxc)
2. Pick a mode number, mx, this gives kx = mxπ

L
which gives ωm = kxc = mxπc

L
.

The solutions for the time evolution are E(t) = a sin (ωmt+ ϕ) where a, ϕ are integration
constants determined by initial conditions.

But we know how to do stat mech for SHOs!
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Comments:

• Rather than springs at each point in space, these oscillators that we just found are
each modes which fill the box – they are distinguished by their

wavenumber ~k = (kx, ky, kz) =
π

L
(mx,my,mz),

not by their location.

• Crucial point: Maxwell’s equations are linear. This means that to find the general
solution, we can just add up solutions for each mode:

~E =
∑
k

~Ek

and further
H =

∑
k

(energy of each mode)

so in the canonical ensemble, the modes will be statistically independent – the partition
function will factorize.

• Claim: boundary conditions are not important for determining the thermal spectrum.
They affect at most a few modes and their contribution becomes negligible in the
thermodynamic limit of a large enough box (compared to the length scale set by T ).
(You can (and will in recitation) redo the following analysis with e.g. periodic boundary
conditions.)

7-11



Outline of calculation of thermal radiation spectrum

The calculation of the thermal radiation spectrum takes two steps:

1. Count modes to get D(ω), the density of states:

D(ω)dω = # of modes with ω ≤ freq < ω + dω

2. Calculate 〈ε(ω)〉, the mean energy in the mode with frequency ω, in thermal equilib-
rium.

Then the things we want are:

U =

∫
dω〈ε(ω)〉D(ω)

u(ω, T ) = 〈ε(ω)〉D(ω)︸ ︷︷ ︸
energy in modes with freq ω

1

V

Note that I am using the angular frequency ω and the ordinary frequency ν interchangeably.
They differ by a factor of 2π.
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Step 1: Counting modes
Modes are labelled by ~k =

(
mxπ
L
, myπ

L
, mzπ

L

)
with mx = 1, 2...;my = 1, 2...;mz = 1, 2.... 4 For

each choice of (mx,my,mz), there are two modes, because there are two polarizations of the
EM field. In the example above, we had kx, Ey, Bz nonzero; the other polarization state with
wavenumber along kx has nonzero Ez, By.

ω depends on ~k, i.e. is different for different modes, as we determined above:

ω2 = c2
(
k2
x + k2

y + k2
z

)
=
c2π2

L2

(
m2
x +m2

y +m2
z

)
This is called the dispersion relation. The
allowed ~ks for a given box, make a 3d grid
(a lattice). Here is what this grid would
look like for a 2-dimensional box:

(The 3d version is on the next page.)

Cumulative number of states:

N(k) ≡ # of modes with |~k| ≤ k

= 2︸︷︷︸
polarization

×
1
8
× 4

3
πk3(

π
L

)3︸ ︷︷ ︸
# of lattice points

←− vol of one octant of sphere with radius k

←− vol in ~k-space around each lattice point

=
1

3

L3k3

π2

Convert to N(ω) using the dispersion relation
ω2 = c2

(
k2
x + k2

y + k2
z

)
, i.e. ω = ck: N(ω) = 1

3
L3ω3

π2c3
The density (of states) is obtained from

the cumulative number (of states) in the usual way:

D(ω) =
d

dω
N(ω) =⇒ D(ω) =

L3

π2c3
ω2 .

4The example in the picture above had mx = 5 and didn’t say what my and mz were. With hard-wall
boundary conditions (the parallel component of the electric field vanishes at the walls), each of the three
modenumbers have to be nonzero in order to have a mode with nonzero amplitude (sin(0) = 0). Actually,
the normal component of the electric field need not vanish in general – so there can be e.g. a mode of Ey

with (mx 6= 0,my = 0,mz 6= 0) – but this depends on the polarizability of the walls. This kind of thing is
the subject of 8.03, I’m told. As you’ll see in recitation, this difference of one mode is not important for
thermodynamics.
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Here I have drawn (told Mathematica to draw) :

• a blue dot for each mode of a 3d box,

• the region of k space with |~k| ≤ 7 (shaded yellow) – its volume is the numerator in the
DoS,

• the region of k space occupied by a single dot (red cube), in particular the one at
(kx, ky, kz) = π

L
(2, 1, 2) – its volume is the denominator in the DoS.
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Step 2: Computing the energy in each mode (classical version)

Before the advent of QM, we would have said

〈ε(ω)〉 = kBT classical equipartition for a classical oscillator

=⇒ u(ω, T ) =
D(ω)〈ε(ω)〉

V
=

L3

π2c3
ω2kBT

1

L3
=
ω2kBT

π2c3

=⇒ u(T ) =

∫ ∞
0

dω u(ω, T ) =
kBT

π2c3

ω3

3
|∞0 =∞.

Oops. In a classical world, an empty cavity at any nonzero temperature contains an infinite
energy per unit volume. Each little patch would have an infinite energy. It’s not just an
infinite constant that you could subtract off either, because it depends on the temperature.
This seems to be in conflict with observation. This was rightly called “the Ultraviolet
Catastrophe”.

This is the problem that Planck solved in 1895, by an inspired guess which began the
understanding by humans of quantum mechanics.

Next: the correct quantum treatment, which is already clear to you from the fact that the
EM field in box is just a bunch of quantum harmonic oscillators.
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Step 2: Computing the energy in each mode (quantum version)

The allowed energy levels are εn = ~ω
(
n+ 1

2

)
, n = 0, 1, 2....

〈ε(ω)〉 = 〈εn〉 = ~ω
(
〈n〉+

1

2

)
=

~ω
eβ~ω − 1

+
1

2
~ω︸︷︷︸

“zero point energy”

We drop the zero point energy. In the integral over ω, it gives an infinite constant. We
can safely drop this by choosing the zero of energy, as long as we’re not worrying about its
gravitational effects.5

u(ω, T ) = 〈ε(ω)〉D(ω)
1

L3

u(ω, T ) =
~
π2c3

ω3

e
~ω
kBT − 1

the Planck distribution

[End of Lecture 19.]

6

On the right: For ~ω � kBT , the oscillator at frequency ω is likely to be in its groundstate,
is rarely excited; therefore it contributes � kBT worth of energy.
On the left: for ~ω � kBT , these modes have classical occupation numbers, contribute kBT
per mode.

5(Trust me that you don’t want to worry about its gravitational effects right now.) This process of taking
advantage of an ambiguity in the definition of the microscopic model (adding an (infinite) constant to the
energy of every state) is an example of a procedure called “renormalization” which is crucial in studying
systems with lots of degrees of freedom distributed over space, like a quantum field theory.
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Location of maximum: 0 = du
dω

=⇒ ~ωmax u

kBT
' 2.82. At Troom, λmax u ' 10−5 · 4.6 m

which is 100 times lower freq (and 100 times longer wavelength) than visible light.

Energy density:

u(T ) =
U

V
=

∫ ∞
0

dω u(ω, T ) =
~
π2c3

∫ ∞
0

dω ω3

eβ~ω − 1

=
~
π2c3

(
kBT

~

)4 ∫ ∞
0

dx x3

ex − 1︸ ︷︷ ︸
=π4/15

.

U

V
=

π2

15

k4
B

~3c3︸ ︷︷ ︸
=4σ/c, Stefan-Boltzmann const

T 4

as promised. We can also find all the other thermodynamic quantities (Z, F, P, S). Since H
is a sum of the energies of each mode,

Z =
∏

all modes

Zi =⇒ F = −kBT lnZ = −kBT
∑
ω

degeneracy(ω) lnZ(ω)

F = −kBT
∫ ∞

0

dω D(ω) lnZ(ω)

= −kBT
∫ ∞

0

dω
L3

π2c3
ω2 ln

(
1

1− e−~ω/kBT

)
=

kBTL
3

π2c3

(
kBT

~

)3 ∫ ∞
0

dx x2 ln
(
1− e−x

)
︸ ︷︷ ︸

=−π4/45

.

=⇒ F = − 1

45

π2k4
B

c3~3
T 4V .

Negative F means TS > E.

P = −
(
∂F

∂V

)
T

=
1

45

π2k4
B

~3c3
T 4

S = −
(
∂F

∂T

)
V

=
4

45

π2k4
B

~3c3
T 3V

U = F + TS =

(
− 1

45
+

4

45

)
π2k4

B

~3c3
T 4V =

1

15

π2k4
B

~3c3
T 4V

as before.

P =
1

3

U

V
as before, and

σ =
π2

60

k4
B

c2~3
.
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Compare to experiment
The best known blackbody is the universe as a whole. At some time in the recent past (13
billion years ago) there was a hot big bang, and all the stuff was in thermal equilibrium at
a very high temperature; since then it’s been expanding and cooling. The universe is filled
with thermal radiation at TCMB = 2.726 K, whose peak is in the microwave frequency range7.

A lot has been learned about the early universe by studying the fluctuations in the tem-
perature from different directions, which have a size of order δρ

ρ
∼ 10−5.

The same spectrum also applies to gluons at tuniverse ∼ microseconds (the presence of quarks
leads to corrections at the 10-20% level; we’ll learn to include them in Chapter 9).

It’s a really good blackbody.

7This value TCMB comes from the temperature above which electrons and protons decide to no longer
form neutral atoms (this a chemistry energy, of order a few eV = 104K. This then gets divided by a factor of
1000 to account for the redshift due to the expansion of the universe since the time when the temperature
was so high.
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7.3 Phonons in a solid

Soundwaves in a crystal are a lot like lightwaves in a cavity.

• csound replaces c. So the dispersion relation is ω = csound|~k|.

• In counting modes for each wavenumber, for light there were two (transverse) polar-
izations. For sound, there are three – two transverse and one longitudinal. (In a gas,
only the longitudinal mode is present.)

• There is one more distinction which will be important below, which is that (the quan-
tum version of) Maxwell’s equations are valid down to as short a wavelength as we
usually care about. On the other hand, soundwaves only are well-described as such if
their wavelength is much longer than the spacing between the atoms of the solid.

transverse

longitudinal

With these replacements, we can immediately write down the density of states:

D(ω) =
3

2
· V

π2c3
sound

· ω2

for the range of frequencies ω where the soundmodes exist as such. A simple way to see that
this formula can’t persist up to ω =∞ is that these are modes of vibration of the positions
of N atoms; these positions are specified by 3N coordinates. There are therefore exactly
3N modes! [Recall from 8.03 that there are two useful perspectives (i.e. bases) here: the
vibrations of each atom, or the Fourier basis of normal modes which diagonalize the energy.]
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Debye model of solid

Debye suggested a reasonable approximate way to
take this into account:

3N =

∫ ωD

0

dω D(ω)

this defines ωD, the Debye frequency, which then serves
as a high-frequency cutoff on all the integrals, a “UV
cutoff”. This gives

3N =
V

2π2c3
s

ω3
D =⇒ ωD =

(
6π2
)1/3

cs/a

where a ≡
(
V
N

)1/3
is the average interatomic spacing.

ωD defines a temperature ΘD, the Debye temperature,

~ωD ≡ kBΘD, i.e. ΘD =
(
6π2
)1/3 ~

kB
cs/a

This approximation does a good job if we ask the right questions: it makes an error at the
high-frequency end of the ω integrals; but the large-ω physics is suppressed by the Boltzmann
factor, as long as T � ΘD. A more correct answer depends on details of the crystal structure
– e.g. is it a cubic lattice, is it a diamond lattice, is it a pyrochlore lattice.

Following our previous analysis of light in thermal equilibrium, the energy density in atomic
vibrations (‘phonons’) in the Debye model is:

U

V
=

∫ ωD

0

dω D(ω)〈ε(ω)〉 =
3

2

~
π2c3

s

∫ ωD

0

dω ω3

e~ω/kBT − 1

Numerically, this gives a heat capacity which looks like this:

(the quantity ? which sets the units on the vertical axis is V 3
2

~
π2c3s

(
kB
~

)4
.) To get some

intuition for this answer, we consider ...
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Limits

This problem is a little more complicated than the EM problem – there are two energy
scales involved: T and ΘD.

High T : T � ΘD

(This regime is less interesting since it’s where we know the model is wrong.) In this regime,
we can Taylor expand the Boltzmann factor e−β~ω ∼ 1− β~ω...:

U

V
=

3

2

~
π2c3

s

∫ ωD

0

dω ω3

~ω/kBT
=

3

2

~
π2c3

s

kBT

~
ω3
D

3

The ~s cancel!

=
3

2

kBT

π2c3
s

1

3
(6π2)

c3
s

V
N =

3

2
kBT

N

V

U =
3

2
NkBT, CV =

3

2
NkB classical equipartition of 3N oscillators

Low T : T � ΘD

At low enough temperatures, the Debye cutoff doesn’t matter, so the model does a good
job.

U

V
=

3

2

~
π2c3

s

(
kBT

~

)4 ∫ ωD/T→∞

0

dx x3

ex − 1︸ ︷︷ ︸
=π4/15 again

=
3

2

π2

15

k4
BT

4

~3c3
s

CV = V
6π2

15

k4
B

~3c3
s

T 3

The answer is the same as blackbody radiation with c → cs and a factor of 3/2 to account
for the longitudinal polarization.

Translating this using the def of ΘD (
V k3

B

~3c3s
= 6π2N

Θ3
D

)

CV =
12π4

5
NkB

(
T

ΘD

)3

for T � ΘD

This is the dominant contribution to the heat capacity at low temperatures of solids which
are not conductors. (As we’ll see in Chapter 9, conduction electrons contribute CV ∝ T at
low temperatures. This is larger.)
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Compare to experiment (Figures from Baierlein)

The slope determines ΘD.

ωD ∼ ΘD ∼ cS
a

. More rigid solids give bigger cs and hence bigger ΘD. Notice diamond.

7-22



The Debye model does a lovely job of parametrizing our ignorance of the microscopic
physics in terms of just one parameter, which can then be measured. This is a nice example
of an effective field theory: it describes the long-wavelength physics of a system in terms of
a continuum of modes; we know this description breaks down at some UV cutoff scale (here
the Debye frequency); dependence on the physics at such short wavelengths is parametrized
in terms of a few parameters (here, e.g. the sound speed). Other examples of such theories
include the Standard Model of particle physics.
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