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9.1 Range of validity of classical ideal gas

For a classical ideal gas, we derived the partition function

Z =
ZN

1

N !
, Z1 =

V

λ3
th

= V

(
2πmkBT

h2

)3/2

,

where the length scale λth ≡ h
2πmkBT

is determined by the particle mass and the temperature.

When does this break down?

1. If ‘idealness’ fails, i.e. if interactions become important. This is interesting and impor-
tant but out of bounds for 8.044. We’ll still assume non-interacting particles.

2. If ‘classicalness’ fails. Even with no interactions, at low enough temperatures, or high
enough densities, quantum effects modify Z.

An argument that classicalness must fail comes by thinking harder about λth, the “thermal de
Broglie wavelength”. Why is it called that? Recall from 8.04 that the de Broglie wavelength
for a particle with momentum p is λdB = h

p
. For a classical ideal gas, we know the RMS

momentum from equipartition

〈 ~p
2

2m
〉 =

3

2
kBT =⇒ pRMS ≡

√
〈~p2〉 =

√
3mkBT .

We could have defined

λ̃th ≡
h

pRMS

=
h√

3mkBT
;

there’s no significance to the numerical prefactor of 1√
2π

instead of 1√
3
.

Now recall the significance of λdB in QM:

λdB =
h

p
∼ minimum size of a wavepacket with momentum p .

So we can infer that

λth ∼ minimum size of quantum wavepackets describing atoms in a quantum ideal gas .

The classical picture of atoms as billiard balls with well-defined trajectories only makes sense
if

λth � typical spacing between particles =

(
V

N

)1/3

And this inequality λth ∼ 1√
T
�
(
V
N

)1/3
is violated at low T or high density. The above

inequality is the condition for validity of the classical treatment.
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System T
(
V
N

)1/3
/λth conclusion

————————– ——— ————– ————–
air 300K 180 classical

Liquid 4He 4 K 0.86 not classical
Conduction e− in Cu 300 K 0.053 not classical

A second derivation of the same criterion, this time in momentum space:

Consider solutions to the Schrödinger equation in an L×L×L box. The energy eigenstates
of one particle are

φ~m(~x) = sin (kxx) sin (kyy) sin (kzz) with k
x
y
z

=
π

L
m
x
y
z

, and m
x
y
z

= 1, 2, 3...

with energy eigenvalues

ε =
~2

2m

(
k2
x + k2

y + k2
z

)
Let’s ask under what circumstances we can ignore the QM.

The mean energy per particle in a classical ideal gas is 3
2
kBT . How many 1-particle states

with energies like this are there to put our N particles into? The number of states with
ε ≤ 3

2
kBT is

N(ε) =

1
8

(
4
3
π
(

2m 3
2
kBT

~2

)3/2
)

(π/L)3 =
volume of octant of sphere in ~k-space with radius

(
2mE

~2

)1/2

volume in ~k-space per allowed grid point

= V

(√
mkBT

h

)3

× 4
√

3π =
V

λ3
th

×
√

3 · 2√
π

So: when N � V
λ3

th
, the number of particles is big compared to the number of possible one-

particle states for the particles to sit in. So we need to worry about things like the Pauli
Exclusion principle, which prevents us from putting more than one particle in each state.
For N � V

λ3
th

, the classical analysis is fine – we needn’t worry about the particles needing to

occupy the same 1-particle state.
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9.2 Quantum systems with many indistinguishable particles

[This section is about quantum mechanics. You’ve already encountered some of these ideas
in 8.04, and will discuss this further in 8.05. We’ll come back in subsection 9.4 and think
about when this business reduces to classical mechanics.]

Consider two particles. Their state can be described by a wavefunction ψ(x1, x2). (We won’t
worry right now about how many coordinates of each particle (e.g. how many dimensions)
we have to specify.) If the particles are indistinguishable, then

|ψ(x1, x2)|2 = Prob
(
finding a particle at x1 and a particle at x2

)
Note that we make no specification of which particle is where. Indistinguishability requires:

|ψ(x1, x2)|2 = |ψ(x2, x1)|2

Swapping the arguments twice should give back the same ψ, not just the same |ψ|2 :

ψ(x1, x2) = ±ψ(x2, x1)
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Two choices:

Bosons

• particles for which ψ(x1, x2) = +ψ(x2, x1).

• i.e., the wavefunction is symmetric.

• It is a fact (observed experimentally, understood via quantum field theory) that they
have integer spin.

• e.g.: hydrogen atoms, 4He, photons, phonons, magnons, gluons, Higgs bosons (?).

• The stat mech of a gas of them was developed by Bose and Einstein, so in the context
of stat mech, these are called “Bose-Einstein statistics”.

Fermions

• particles for which ψ(x1, x2) = −ψ(x2, x1).

• i.e., the wavefunction is antisymmetric.

• It is a fact (observed experimentally, understood via quantum field theory) that they
have half-integer spin (1/2, 3/2...)

• e.g.: electron, proton, neutron, 3He, 7Li.

• The stat mech of a gas of them was developed by Fermi and Dirac, hence “Fermi-Dirac
statistics”.

For non-interacting Bose or Fermi particles (we will always assume this):
energy eigenstates are always (symmetric or antisymmetric) linear combinations of products
of single-particle energy eigenstates.

[Recall: there is more to QM than energy eigenstates, but they are enough to construct
the partition function.]

9-5



Wavefunctions of several bosons or fermions

Consider for example two indistinguishable quantum particles in a box. Label the possible
states of one quantum particle in the box by a fancy label α which is a shorthand for all its
quantum numbers, e.g., the wavenumbers (mx,my,mz) of its wavefunction.

If they are bosons, the wavefunction must be of the form

Ψ(x1, x2) = φα(x1)︸ ︷︷ ︸
an energy eigenstate

of one particle

· φβ(x2)︸ ︷︷ ︸
another energy eigenstate

for one particle︸ ︷︷ ︸
not sym or antisym
hence not allowed

+︸︷︷︸
makes it symmetric
OK state of bosons

φβ(x1)φα(x2).

For fermions:

Ψ(x1, x2) = φα(x1)φβ(x2) −︸︷︷︸
makes it antisymmetric
OK state of fermions

φβ(x1)φα(x2).

Working our way up to 3 indistinguishable particles:

Ψ(x1, x2, x3) = φα(x1)φβ(x2)φγ(x3)± φα(x1)φγ(x2)φβ(x3)

φβ(x1)φγ(x2)φα(x3)± φβ(x1)φα(x2)φγ(x3)

φγ(x1)φα(x2)φβ(x3)± φγ(x1)φβ(x2)φγ(x3)

with + for bosons and − for fermions.

This time we count 1, 2, 3, many:

9-6



N indistinguishable particles:

1. Pick N single particle states α, β, γ....

2. There is exactly one symmetric combination. This is an energy eigenstate for N bosons.

3. IF α, β, γ.... are ALL DIFFERENT then there is exactly one antisymmetric combi-
nation. This is an energy eigenstate for N fermions.

• This fact that “Fermions must all be in different single particle eigenstates” is the Pauli
Exclusion Principle.

• Many bosons can be in the same single-particle energy eigenstate.

• If the particles were distinguishable, there would be N ! states for each choice of
α, β, γ.....

• If the particles are indistinguishable, there is (at most) one such state.
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Occupation number representation of the many-particle state

For either bosons or fermions, the state Ψ(x1, x2...xN) is fully specified by indicating

1. Which 1-particle states are occupied?

2. If bosons, how many particles are in each 1-particle state? (For fermions, this number
can only be 0 or 1.)

Label the 1-particle states α (e.g. mx,my,mz for ideal gas, or n, `,m for Hydrogen atoms)
So: the state Ψ is specified by a set of integers called OCCUPATION NUMBERS:

nα(Ψ) ≡ # of particles in 1-particle state α

when the many-particle state is Ψ.

Fermions: nα ∈ {0, 1} Bosons: nα ∈ {0, 1, 2, 3...}

These numbers also specify N,E, ..., as follows.

total # of particles in state Ψ: N =
∑
α

nα(Ψ)

The sum here is over all possible states in which one of the particles could be; many of them
will be unoccupied. This is not a sum over particles.

Similarly, if

εα = the energy eigenvalue of the 1-particle energy eigenstate α

then the total energy in the many-particle state Ψ is

total energy in state Ψ: E(Ψ) =
∑
α

nα(Ψ)εα
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9.3 Statistical mechanics of N non-interacting (indistinguishable)
bosons or fermions

We’ll use the canonical ensemble: an ensemble of copies of the system, all with the same
N, T (hence, E varies amongst the copies in the ensemble), in contact with a heat bath at
temperature T .

〈E〉 =
∑

i∈ensemble

Ei︸︷︷︸
total energy
of N particles

· p(Ψi)︸ ︷︷ ︸
prob of finding

the N -particle state
Ψi in the ensemble

=
∑
i

(∑
α

nα(Ψi)εα

)
· p(Ψi)

=
∑
α

εα ·

(∑
i

nα(Ψi)p(Ψi)

)
︸ ︷︷ ︸

≡ 〈nα〉
mean value of the occupation number

of the 1-particle state α
in the ensemble of N -particle states

So: if we know 〈nα〉 ≡
∑

i nα(Ψi)p(Ψi), then we know

〈E〉 =
∑
α

εα〈nα〉 .

A check on this formalism:

∑
α

〈nα〉 =
∑
α

∑
i

nα(Ψi)p(Ψi) =
∑
i

(∑
α

nα(Ψi)

)
︸ ︷︷ ︸

=N

p(Ψi) = N
∑
i

p(Ψi) = N

So: how do we calculate the average occupation numbers 〈nα〉?
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〈nα〉 for fermions

〈nα〉 =
∑

all N -particle states Ψi

nα(Ψi)p(Ψi) p(Ψ) = Z(N)−1e−βE(Ψ)

=
1

Z(N)

∑
i

nα(Ψi)e
−βEi

=
1

Z(N)

1∑
n1=0

1∑
n2=0

1∑
n3=0

...︸ ︷︷ ︸
subject to the constraint n1 + n2 + ... = N

nα e−β(n1ε1+n2ε2+...)

We just sum over all occupation numbers, consistent with the fact that there are N particles
altogether. One of these sums is special, so let’s write the two terms nα = 0 and nα = 1
explicitly:

〈nα〉 = 0︸︷︷︸
nα=0

+
1

Z(N)
e−βεα

1∑
n1=0

1∑
n2=0

1∑
n3=0

...︸ ︷︷ ︸
doesn’t include nα

which is 1
so the rest are

subject to the constraint
n1 + n2 + ... = N − 1

e−β(n1ε1+n2ε2+...)︸ ︷︷ ︸
excluding nαεα

Repackage in a sneaky way which takes advantage of nα = 0 or 1:

〈nα〉 =
1

Z(N)
e−βεα

1∑
n1=0

1∑
n2=0

1∑
n3=0

...︸ ︷︷ ︸
includes nα

subject to the constraint
n1 + n2 + ... = N − 1

(1− nα) e−β(n1ε1+n2ε2+...)︸ ︷︷ ︸
includes nαεα

Notice that the nα = 1 term in the summation gives zero; this means it doesn’t matter if we
include it in the Boltzmann factor. The nα = 0 term in the summation gives what we had
before.

〈nα〉 =
1

Z(N)
e−βεα (Z(N − 1)− 〈nα〉for N − 1 particlesZ(N − 1))

=
Z(N − 1)

Z(N)
e−βεα (1− 〈nα〉for N − 1 particles) (1)
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The Fermi-Dirac distribution

We want to rewrite our expression for 〈nα〉fermions as a function of T, µ.

To do this, recall that

µ ≡ F (T, V,N)− F (T, V,N − 1) = −kBT (lnZ(N)− lnZ(N − 1))

=⇒ Z(N − 1)

Z(N)
= eµ/kBT .

Now, in a box with three particles, 〈nα〉N=3 6= 〈nα〉N−1=2. But for N ∼ 1025,

〈nα〉N ≈ 〈nα〉N−1 for N �� 1.

=⇒ 〈nα〉 = eµ/kBT e−εα/kBT · (1− 〈nα〉)

solve this for 〈nα〉: 〈nα〉 (1 + ex) = ex, with x ≡ β (µ− εα):

=⇒ 〈nα〉 =
ex

1 + ex
=

1

eβ(εα−µ) + 1
for FERMIONS

What’s µ? It’s determined from the relation between µ and N :

N =
∑
α

〈nα〉 =
∑
α

1

eβ(εα−µ) + 1

Notice: each 〈nα〉 ∈ [0, 1], since e−x ∈ [0,∞] for real x. This is the Pauli Principle in action.
The extremes are realized in the T →∞, 0 limits, if we hold µ fixed. More on this below.
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〈nα〉 for Bosons (the Bose-Einstein distribution)

〈nα〉 =
1

Z(N)

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

· · ·︸ ︷︷ ︸
with n1 + n2 + ... = N

nα e
−β(n1ε1+n2ε2+...)

one special sum:
∞∑

nα=0

nαe
−βnαεα

No contribution from nα = 0. Tricky step: let n′α ≡ nα − 1

=
1

Z(N)

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

· · ·︸ ︷︷ ︸
with n1 + n2 + ...+ n′α + ... = N − 1

(n′α + 1) e−βεα(1+n′α)−β(n1ε1+...)

N − 1 in all states including φα, at least one particle in φα.

=
e−βεα

Z(N)
(Z(N − 1) + 〈nα〉for N − 1 particles · Z(N − 1))

The only difference from fermions is the red plus sign. Making the same steps following
equation (1)

=⇒ 〈nα〉 =
1

e(εα−µ)/kBT − 1
for BOSONS.

Notice that the minus sign in the denominator is very significant: with this sign, the
denominator can become small, and so 〈nα〉BOSONS can be larger than unity.

Again µ is determined from the relation between µ and N :

N =
∑
α

〈nα〉 =
∑
α

1

eβ(εα−µ) − 1

Summary: ∑
α

〈nα〉 = N∑
α

〈nα〉εα = 〈E〉

〈nα〉FERMIONS =
1

e(εα−µ)/kBT + 1
is between 0 and 1.

〈nα〉BOSONS =
1

e(εα−µ)/kBT − 1
is between 0 and N .
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9.4 Classical ideal gas limit of quantum ideal gas

The rest of 8.044 will be decoding the physics in the expressions on the previous page (and
there is a lot of physics in them). First let’s check that we can recover our previous classical
results in the right limit.

If e(εα−µ)/kBT � 1 then

〈nα〉fermions = 〈nα〉bosons ≈ e−(εα−µ)/kBT ≡ 〈nα〉Boltzmann � 1

This factor gives the occupation numbers for “Boltzmann statistics”.

Claim: this is the classical limit. A weak check on this claim is the fact that the B and
F distributions reduce to the same expression in this limit. To show: 〈nα〉Boltzmann are the
classical occupation numbers in thermal equilibrium.

[End of Lecture 21.]

1. Classical when e−µ/kBT � 1 =⇒ e+µ/kBT � 1. We saw in the previous chapter that
a classical ideal gas has

− µ

kBT
= ln

(
V

N

1

λ3
th

)
So

e−µ/kBT � 1 =⇒ V

N

1

λ3
th

� 1

which is our classicality criterion from before (subsection 9.1).

2. Now that we know we’re in the right limit, let’s examine the Boltzmann occupation
number, and show that it’s the classical expectation.

〈nα〉Boltzmann = e(µ−εα)/kBT

Previously we wrote everything in terms of N , so let’s do that now:

N =
∑
α

〈nα〉 = eµ/kBT
∑
α

e−βεα︸ ︷︷ ︸
=Z1

=⇒ eµ/kBT =
N

Z1

for Boltzmann statistics

µ = −kBT ln
Z1

N
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This is the familiar classical ideal gas result, if we can show that Z1 is indeed the
classical ideal gas 1-particle partition function. We also have

〈nα〉Boltzmann =
N

Z1

e−εα/kBT

which is a familiar fact from the canonical ensemble. That is, it is equivalent to the
happy statement

prob (1 atom is in state α) = p(α) =
e−βεα

Z1

=
〈nα〉Boltzmann

N

Also, we saw earlier in Chapter 8 that in general, from the definition of chemical
potential,

Z(N) = e−µ/kBTZ(N − 1)

For the particular case of Boltzmann statistics:

Z(N) =
Z1

N
Z(N − 1) this becomes a recursion relation!

=
Z1

N

Z1

N − 1
Z(N − 2) =

Z1

N

Z1

N − 1

Z1

N − 2
Z(N − 3) = ...

Z(N) =
(Z1)N

N !

We have now derived this result from the classical limit of the quantum result.

Finally, we evaluate Z1:

Z1 =
∑
α

e−βεα where α is a label on single-particle energy eigenstates

=
∑
kx

∑
ky

∑
kz

e
− ~2

2mkBT
(k2
x+k2

y+k2
z)

=

(∑
kx

e
− ~2

2mkBT
k2
x

)3

with kx = mx
π

L
, mx = 1, 2, 3...

In the high temperature or low-density limit, the steps in kx are negligible and we can
approximate the sum as an integral.

Z1 =

(∫ ∞
0

dkx
L

π
e
− ~2

2mkBT
k2
x

)3

=

(∫ ∞
−∞

dkx
L

2π
e
− ~2

2mkBT
k2
x

)3

=

(
L

2π

(
2πmkBT

~2

)1/2
)3

= V

(
2πmkBT

~2

)3/2

=
V

λ3
th

.

Finally, this is the fulfillment of the promise that the factor of 1
h3 that we apparently arbi-

trarily used to normalize our classical phase space integrals would come from QM, i.e. it’s
what we get when we start with the correct QM answer and take the classical limit.
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9.5 Ultra-high temperature (kBT � mc2 and kBT � µ) limit

Let’s evaluate the average energy 〈E〉 for an ultrarelativistic gas of fermions or bosons at
high temperature, in particular at temperature bigger than any other energy scale: kT �
mc2, kT � µ.

〈E〉 =
∑
α

εα〈nα〉 =

∫ ∞
0

1
8
4πk2dk

(π/L)3 ε(k)〈nk〉

where [8.033]

ε(k) =
√
p2c2 +m2c4 =

√
~2c2k2 +m2c4 ≈ ~ck

– this last approximation will be valid in the high-temperature regime –

and 〈nk〉 =
1

e(ε(k)−µ)/kBT ± 1

+ : fermions
− : bosons

.

So:
〈E〉
V

=
~c
2π2

∫ ∞
0

dkk3

e(~ck−µ)/kBT ± 1

For kBT � µ, we can ignore the contribution from µ. Then we can non-dimensionalize the
integral by introducing x ≡ ~ck

kBT
, in terms of which

〈E〉
V

=
(kBT )4

2π2 (~c)3

∫ ∞
0

dxx3

ex ± 1︸ ︷︷ ︸
=

8><>:
7π4

15
, for fermions

8π4

15
, for bosons

=⇒ 〈E〉
V

=
π2

30

(kBT )4

(~c)3 ×

{
1, for bosons
7
8
, for fermions

Observation: the blackbody radiation answer is obtained from this formula with two species
of massless bosons with µ = 0.

Reinterpretation: 〈n〉 for the harmonic oscillator modes of EM field ≡ the occupation

number for ~k-space modes of these bosons.

• These bosons are called photons.

• There are two species because of the two polarizations.

• They are massless because the dispersion relation for EM waves is ω = ck; there is no
parameter with dimensions of mass in Maxwell’s equations. This a deep fact. A mass
term in the energy density of the EM field would look something like m2AµA

µ; but
this is not invariant under gauge transformations.
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• Unlike the number of atoms in a box, the number of photons is not a conserved quantity.
This forces the chemical potential to be zero – there’s no need for a constraint fixing
N , and hence no need for the Lagrange multiplier µ

Relatedly, µ = 0 says there is no free energy cost to adding one more photon. The
fact that they are massless means we can add photons with ~k = 0 at zero energy cost,
since ε(k = 0) = 0. (The fact that they are bosons means we can keep doing this over
and over, even if the mode already has nonzero occupation number.)

As T grows, the total number of photons =
∑

α〈nα〉 also grows. This is distinct from
the case of e.g. Helium atoms, where the chemical potential µ(T ) must adjust to keep
the number of atoms fixed.

Where can we find an example of a ultra-relativistic gas of fermions? Cosmology.

Generally, heating something up by an extreme amount is a good way to figure out what
are its constituents. Conveniently for particle physicists, the whole universe somehow got
heated up quite a bit in the past. The early universe is a great source of examples of
ultrarelativistic bosons and fermions at high temperature. For example, at kBT = 4 ×
108eV = 400MeV (i.e. T ∼ 1012 ·5 K), which was the situation at about 1 microsecond after
the Big Bang, an accounting of the energy density begins by thinking about a gas of photons,
electrons, positrons, quarks, antiquarks, gluons. If we treat them as ultra-relativistic and
non-interacting (not necessarily a good idea), we get:

〈E〉
V

=
π2

30

(kBT )4

(~c)3 ×

(# of bosons)︸ ︷︷ ︸
2︸︷︷︸

photons

+ 2× 8︸ ︷︷ ︸
gluons

×1 + (# of fermions)︸ ︷︷ ︸
2× 2︸ ︷︷ ︸

2 spins of q and q̄

× 3× 3︸ ︷︷ ︸
of 3 colors and 3 flavors

+ 2× 2× 5︸ ︷︷ ︸
2 spins of e, ē, µ, µ̄ and ν, ν̄ × 3

×7

8



People have recently recreated similar conditions by colliding heavy ions at very high speeds
(initially at RHIC on Long Island, NY and more recently at the LHC at CERN). They have
created a new state of matter called Quark-Gluon Plasma, which turns out to be a liquid at
the temperatures and densities that have been studied so far.
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Statistical mechanics flowchart
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9.6 Fermions at low temperatures

So far we’ve discussed high temperatures. Low temperatures is where quantum statistics –
the differences between boson, fermions, and ‘Boltzmons’ – are most dramatic.

For fermions in thermal equilibrium, the occupation number of the single-particle state α
is

〈nα〉 =
1

e(εα−µ)/kBT + 1
.

The only property of the single-particle state that enters is its energy, so we may relabel this
(as is conventional) as

f(ε) ≡ 1

e(ε−µ)/kBT + 1
, the Fermi distribution function.

This one function contains the physics of metals, semiconductors, white dwarves, neutron
stars...

Consider first the extreme T → 0 limit of this function.
It looks like this: −→−→−→−→−→
A useful fact: f(ε = µ) = 1

2
at any temperature.

How do we understand this answer for the distribution
of occupied states at T = 0? At T = 0 the system is in
its groundstate. The groundstate of N free fermions is
constructed by filling the N lowest-energy single-particle
states. The highest energy level that’s filled is called εF ,
the Fermi energy. (Note that this is a single-particle en-
ergy level, not an energy of all N particles.) The answer
we’ve found for f says that, at T = 0, all states below the
chemical potential are filled (f = 1) and all states above the chemical potential are empty
(f = 0). So:

εF = µ(T = 0) .

Note that µ will be T -dependent.

The value of εF is determined by N :

N =
∑
α

〈nα〉 =

∫ ∞
0

dεD(ε)f(ε) at any T

=

∫ εF=µ(T=0)

0

dεD(ε) at T = 0
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D(ε)
D(ε) is the same kind of object that we considered earlier
in the context of blackbody radiation. The counting of
momentum states is the same as in Chapter 7:

N(k) = # of states with |~k| < k = 2︸︷︷︸
spin- 1

2
fermions

1
8

4
3
πk3

(π/L)3 .

For spin-1
2

fermions, there are two spin states (‘up’ and
‘down’) for each wavenumber.

The only difference is that now we will consider non-
relativistic fermions, which have a dispersion relation

ε =
~p2

2m
=

~2

2m
~k2.

So

N(ε) =
V

3π2

(
2m

~2

)3/2

ε3/2

D(ε) =
d

dε
N(ε) = V

1

2π2

(
2m

~2

)3/2

︸ ︷︷ ︸
≡a

ε1/2

N = N(εF ) =

∫ εF

0

D(ε)dε =
2

3
aV ε

3/2
F =

2

3
aV µ

3/2
0 (2)

(here I wrote µ0 ≡ µ(T = 0) for aesthetic reasons).

This gives the relationship between N and µ(T = 0):

µ(T = 0) = εF =

(
N

V

3

2a

)2/3

.

The following formula will be useful below:

D(εF ) =
3

2

N

εF
. (3)

Another useful quantity to define is the Fermi momentum (or Fermi wavenumber)

kF ≡
√

2mεF/~2
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in terms of which

N = 2
1
8

4
3
πk3

F

(π/L)3

and so

kF =

(
3π2N

V

)1/3

.

At T = 0, all states with k < kF (and hence ε < εF ) are filled. All states with k > kF (and

hence ε > εF ) are empty. The locus {~k such that |~k| = kF} is called the Fermi surface. The
stuff inside is called the Fermi sea.

Now: what’s the total energy E of the N fermions in thermal equilibrium?

E =
∑
α

εα〈nα〉
any T
=

∫ ∞
0

dε ε︸︷︷︸
what are we averaging

· D(ε)︸︷︷︸
how many states have this energy?

· f(ε)︸︷︷︸
how many are occupied?

at T = 0
=

∫ εF

0

dεεD(ε) =

∫ εF

0

dεεV aε1/2

=⇒ E =
2

5
aV ε

5/2
F .

Using the expression (2) to eliminate a :

E =
3

5
NεF ∝ N

(
N

V

)2/3

Notice how completely different this is from a classical ideal gas. In particular, the internal
energy depends on the volume. This is because the wavefunctions of the fermions are spread
over the container, so they care how big it is.
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Electrons in a metal

How big is εF for the conduction electrons in Copper?

N

V
=

1 e− per Cu atom

1 Cu atom per unit cell of crystal
= 1022 · 8.45

e−

cm3

=⇒ kF =

(
3π2N

V

)1/3

= 108 · 1.36cm−1

=⇒ εF =
~2k2

F

2me

≈ 7eV.

If we define the Fermi velocity vF by

εF =
1

2
mv2

F =⇒ vF = 108 cm

s
≈ c

200

which is much bigger than the few hundred meters per second of classical ideal gas at TROOM

(though they are still reliably non-relativistic). Even though T = 0 here, some of the
electrons have lots of kinetic energy. This shows in dramatic fashion that in general you
cannot think of temperature as “average kinetic energy” like you can for a classical ideal
gas.

We can also define a Fermi temperature by kFTF = εF , which comes out to TF ≈ 80, 000K.
What’s this? It’s the temperature that the conduction electrons consider high. Notice that
it’s bigger than the melting temperature of the solid; actually, it’s even bigger than the
temperature at which the solid vaporizes. So it’s very high. This means that it’s a good
idea to treat the conduction electrons in a metal as if they are at low temperature for most
purposes.
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Nonzero (but low) temperature

Shown here is the Fermi-Dirac distribution

f(ε) =
1

e(ε−µ(T ))/kBT + 1

for three values of T , at the same N 1. Recall that f(ε = µ(T )) = 1
2

for any T ; the three black
dots show the values of ε = µ(T ) where this occurs at each T . µ is a decreasing function of
T . Why is that?

At T increases, we fill some states above µ0 and empty some states below µ0.

But since D(ε) is an increasing function of ε, µ must decrease in order to keep N fixed.2

1The values of T are T = 0, µ0/4 and µ0/2 – if I showed lower temperatures you wouldn’t be able to see
µ(T ) changing.

2Cultural remark: The actual dependence of µ on T is not so easy to extract

N = aV T 3/2

∫ ∞
0

√
xdx

ex−µ(T )/kT + 1
= aV T 3/2

(
−
√
π

2
Li3/2

(
−eµ(T )/kT

))
– it involves the inverse of a PolyLog, which is not an elementary function.
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Semi-quantitative account of specific heat

The actual calculation of the energy and specific heat involves some horrible integrals which
you can do in your spare time or when you take a more advanced stat mech course. For
0 < T � TF (e.g. electrons in a metal at room temp), we can approximate f(ε) as a ramp:

interpolating linearly between 1 and 0 at ε = µ over a range δε which depends (linearly) on T
(δε = 3kBT is a good numerical value). In this plot is also the actual F-D distribution (dotted
curve), with T = δε/3kB, but you can barely see it – this is not such a bad approximation.
The number of fermions is then:

N ≈
∫ µ(T )

0

D(ε)dε︸ ︷︷ ︸
yellow rectangle

−D(ε− 1

2
δε)

1

4
δε︸ ︷︷ ︸

red triangle

+D(ε+
1

2
δε)

1

4
δε︸ ︷︷ ︸

blue triangle

We know from T = 0 that

N =

∫ εF

0

D(ε)dε εF = µ0

Subtracting the previous two expressions gives

0 ≈ (µ− εF )D(εF ) +
1

4
(δε)2D′(εF )

=⇒ µ ≈ εF −
1

4

D′(εF )

D(εF )
(δε)2

On the other hand

D(ε) ∝ ε1/2 =⇒ D′(εF )

D(εF )
=

1

2εF
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If we take δε ≈ 3kBT , the result is

µ(T ) ≈ εF −
9

8

(kBT )2

εF

The actual correct answer [8.08] is

µ(T ) = εF −
π2

12

(kBT )2

εF
+ ... = εF

(
1− π2

12

(
T

TF

)2

+O
(
T

TF

)4
)

This is a small shift, especially given that for Cu at room temp T
TF

= kBTROOM

εF
= 293

81,000
.

3

[End of Lecture 22.]

3Why is the deviation of the chemical potential from µ0 quadratic in the temperature? (Thanks to Mustafa
Amin for asking for some physical explanation of this.) One answer to this question is the following: The
statement that µ(T ∼ 0) ∼ µ0 − aT 2 says that

(
∂µ
∂T

)
N,V
|T=0 = 0. But this quantity participates in a

Maxwell relation (
∂µ

∂T

)
N,V

=
(
∂S

∂N

)
T,V

(which comes from demanding that F is a state variable, dF = −SdT + µdN). The quantity on the
RHS vanishes at T = 0 for a simple reason: the groundstate of free fermions is unique for any N . Hence
S(T = 0, N) = 0 is independent of N .
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Energy, in this ‘ramp’ approximation
E ≈ E(T = 0)− (εF − µ)D(εF )εF︸ ︷︷ ︸

change because f(ε) = 1/2
is at ε = µ < εF

+
1

4
(δε)2D(εF )︸ ︷︷ ︸

change because we shift
1
4
δεD(εF ) particles

upwards in E by δε

=⇒ E ' E(T = 0)− 1

8

(δε)2

εF
D(εF )εF +

1

4

(δε)2

εF
D(εF )εF

= E(T = 0) +
1

8

(δε)2

εF
D(εF )εF

= E(T = 0) +
9

8
(kBT )2D(εF ) .

The useful rough summary of this formula is

E ≈ E(T = 0) + (number of fermions shifted) · (by how much their energy shifts) .

The reason the change in energy goes like (δε)2 ∼ T 2 is that the amount of particles that
change energy is of order δε, and the amount by which each one changes energy is of order
δε.

The actual answer from the exact f(ε) is:

E = E(T = 0) +
π2

6
(kBT )2D(εF ) +O

(
T 4
)

= E(T = 0) +
π2

4
N

(kBT )2

εF
+O

(
T 4
)

(we used (3) in the second step) which gives

CV =
π2

2
NkB

kBT

εF
=
π2

2
NkB

T

TF
� NkB

For conduction electrons in a metal, we can’t actually reach T = TF because the metal
melts (even vaporizes) first.
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Basic theory of metal

We’ve calculated here the contribution from the conduction electrons to the heat capacity
of a metal. Previously in §7.3 we calculated the contribution from phonons – soundwaves
made from vibrations of the ions in the crystal. Putting these together (adding them requires
that we ignore interactions between the electrons and the phonons, which is a very good first
approximation) gives: for a metal with T < ΘD and T � TF

CV
NkB

=
π2

2

(
T

TF

)
︸ ︷︷ ︸

fermion contribution
(conduction electrons)

+
12π4

5

(
T

ΘD

)3

︸ ︷︷ ︸
boson contribution

(phonons)

For T � ΘD, the phonon contribution approaches the equipartition value, 3NkB.

CV
NkB

= γT + AT 3 =⇒ CV
NkBT

= γ + AT 2

should be linear with an intercept ∝ 1/TF (telling us the density of conduction electrons)
and a slope ∝ Θ−3

D (telling us about the rigidity of the crystal):
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Bookmarks for a better theory of solids

This is a pretty good accounting of the basic excitations of a metal. Full disclosure: there’s
more to metals than this. The two main important things we’ve ignored (which one learns
more about in a class on the Theory of Solids (aka Condensed Matter Physics)) are

• crystal lattice – the detailed structure of the crystal, ignored by the Debye model.

– changes the value of ΘD

– changes the shape of the Fermi surface. not round.

– changes the value of TF

• interactions between electrons

– often, these effects can be accommodated by a simple “renormalization” of cou-
pling parameters (me,ΘD, TF ). The fermion excitation is an electron plus its
cloud of influence on its companions that it must drag along with itself. This
changes, e.g., its effective mass.

– the result is called Landau Fermi Liquid Theory.

– sometimes this fails: “non-Fermi liquid”. This is an open problem.
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Fermi (degeneracy) pressure and white dwarf stars

A rather spectacular consequence of our previous analysis is that a Fermi gas has a nonzero
pressure, even at T = 0.

E =
3

5
N

(
N

V

3

2a

)2/3

a =
1

2π2

(
2m

~2

)3/2

(In terms of the Fermi energy, this is E = 3
5
NεF . It would be 1 · NεF if all states were at

the Fermi energy.)

dE = T︸︷︷︸
=0

dS − PdV =⇒ P (T = 0) = −dE
dV

= +
2

3

E

V
.

This is totally because of Pauli exclusion: if you squeeze the box, it reduces the volume, and
the energy of the lowest N states goes up.

This is an important component in the compressibility of a metal. There Coulomb repulsion
– i.e. interactions – between the electrons also plays a role.

An example where Fermi pressure is dominant is in white dwarf stars. Why doesn’t a
star collapse under its own weight? Because some internal pressure balances gravity. In an
ordinary star, this comes from the pressure of some hot gas, kept hot by some nuclear fusion
reactions. What happens when the nuclear fuel runs out?

When the fuel (He) runs out, the star collapses, until it’s (maybe, if it’s not too heavy, as
we’ll see) supported by the degeneracy pressure of the electrons. This is a white dwarf.

Model:

1. What’s left when the nuclear fuel of not-too-big stars like our sun (H, He) runs out
is carbon and oxygen. (Only very heavy stars can burn these in nuclear reactions.)
Let’s ignore the oxygen, and suppose for simplicity that what’s left is 13C, which is a
fermion.4 There are 6 e− for each 13C, so that the net electric charge is zero.

2. We will suppose the star is a uniform-density ball. To get exactly correct answers,
one must include a density profile which depends on the distance from the center.
We are going to make an estimate; we’ll get the right dependence on the radius, but
the numerical prefactors will be wrong. Solving the correct equations (a differential
equation for the density profile) is not too hard with a computer.

4This is not exactly right – 12C is more stable – but it’s not wrong in an important way for our purposes.
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A white dwarf glows white because its temperature is something like T ∼ 10000K. But
from the point of view of the electrons, this is cold! This temperature is much less than TF
– the thing is very dense.

The total kinetic energy of all the particles in the star is

KE ' 3

5
Ne εF︸︷︷︸

εF of electrons

+
3

5
NC εCF︸︷︷︸

εF of Carbon � εF :∝ 1
mC

Kinetic energy of electrons dominates over that of carbon.

=
3

5
Ne

~2

2me

(
3π2Ne

V

)2/3

=
3

5
Ne

~2

2me

(
9π

4

Ne

R3

)2/3

The mass of the star is M = NCmC = Ne
6
mC where mC = mass of Carbon nucleus, so

Ne = 6M/mC .

KE ≈M5/3 · 1

R2
· c1 c1 =

3~2

10me

(
6

mc

)5/3(
9π

4

)2/3

Reducing R increases the energy: voila, Fermi pressure.

Gravity
Without gravity, the star would explode.

Gravitational potential energy = − 3

5︸︷︷︸
uniform density sphere

GN
M2

R
.

Etotal = c1
M5/3

R2
− 3

5
GN

M2

R
.
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The minimum of the potential – the preferred radius of the white dwarf star – occurs when

0 =
∂

∂R
Etotal|R=R? =⇒ M?R

3
? =

(
10c1

3GN

)3

= 2 · 39 · π2 ~6

G3
Nm

3
em

5
C

that is, when R? ∝ 1

M
1/3
?

. Heavier ones are smaller – this is different from most stuff in our

common experience. You can see from the plot of Etotal(R) that this is a stable minimum.

Numerically5 : (
M

Msun

)(
R

7260km

)3

= 1

Observations:
Sirius B: M = 1.05Msun, R = 5100km (the above result predicts 11000km).
40 Eri B: M = 0.447Msun, R = 9000km (the above result predicts 14000km).

This is pretty good! Why isn’t it perfect? Also: what happens if we keep adding mass? The
formula predicts that the thing gets smaller and smaller. Clearly that cannot go on forever
(at some point we’d have to include nuclear physics and general relativity and quantum
gravity...).

5The more correct calculation which includes a nontrivial density profile gives(
M

Msun

)(
R

11, 000km

)3

= 1 .
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Let’s compute the kinetic energy of these electrons.

εF =


Ne

V︸︷︷︸
6M/mC

4
3πR

3


2/3

(
3

2
2π2

)2/3 ~2

2me

' 0.1mec
2.

The density is

Ne

V
=

6M/mC

4
3
πR3

= 1029 · 3.7cm−3 for M = Msun, R = 103km

(ridiculously huge!). So vF/c '
√

0.2 = 0.44 in our model. The actual (smaller) radius
makes it even closer to the speed of light.

So: εF ≈ 0.1mec
2 is a large fraction of the rest energy of an electron – we should be very

nervous about using the non-relativistic dispersion relation ε = ~2k2/2m. On Pset 11 you’ll
have the chance to “bracket the truth from the other side” and consider the other extreme
– the ultra-relativistic case, where ε = ~ck; this is valid for εF � mec

2, where we can ignore
the mass completely. Here’s what you should find:

Ultra-relativistic fermi gas:

KE =
3

4
NeεF with εF = (3π2)1/3~c

(
N

V

)1/3

= c2
M4/3

R
with c2 =

3

4
~c
(

9π

4

)1/3(
6

mC

)4/3

.

=⇒ Etotal =

(
c2M

4/3 − 3

5
GNM

2

)
1

R
.

So you’ll find that in this case, both terms go like 1/R. This means that no minimum of the
potential exists in the ultra-relativistic regime. There’s a critical value of the mass

0 = c2M
4/3
crit −

3

5
GNM

2
crit =⇒ Mcrit =

(
5c2

3GN

)3/2

which divides two extremely different cases. For M < Mcrit, the radius will increase until
it gets to the non-relativistic regime (recall that big R means less relativistic, since lower
density means lower εF ).
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For M > Mcrit, the density just can’t get big enough for the electron degeneracy pressure
to stop the collapse: there is a maximum mass (called the Chandrasekhar mass), beyond
which no stable white dwarf stars exist. Its value from the more correct analysis with the
density profile is:

MChandra =

(
~c
GN

)3/2
1

m2
proton

0.77

(the analysis above gives 0.92 instead of 0.77 if we use mC = 12mproton).

MPlanck ≡
(

~c
GN

)1/2

is a mass

– it’s a mass scale intrinsic to gravity. Remarkably,

MChandra = mproton

(
MPlanck

mproton

)3

0.77 = mproton

(
1019 · 1.3

)3
0.77 = 1.42Msun.

This seems to be a bit of a numerical coincidence, but we can’t be too surprised, since the
physics that determines the size of the sun also involves ~, c, GN ,mproton and a balance of
gravitational energies against energies having to do with mproton.

So: our sun will become a white dwarf when it runs out of nuclear fuel a few billion years
from now.

What if it were heavier by a factor of 3/2 or more? Beyond this critical mass: neutron
degeneracy pressure can also hold up the star. There is an analogous limit to neutron
star masses, Mneutrons

Chandra ∼ Msun × a few. The value is uncertain because neutron-neutron
interactions matter.

For masses beyond even that: black holes are the only known possibility.
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9.7 Bosons at low temperatures

Here will think about N bosonic particles, maybe 4He or sodium or hydrogen or rubidium
atoms. We will suppose that N is fixed. (Recall that this is not the case for e.g. photons
whose number is not conserved in general.)

Start at T = 0. This is easy: all the N particles are in
the 1-particle groundstate!

E(T = 0) = Nε1

For an L× L× L box with hard walls,

ε1 =
~2

2m

π2

L2

(
12 + 12 + 12

)
=

3π2~2

2m

1

V 2/3

=⇒ E(T = 0) ∝ N

V 2/3
=⇒ P = −

(
∂E(T = 0)

∂V

)
S

∝ − 1

V 5/3

V→∞→ 0

There is no “Bose pressure” at T = 0. Very different from fermions at T = 0.

Bosons at T > 0

We might expect based on classical intuition that as soon as kBT > ε2− ε1, (where ε2 is the
energy of the first excited state, ε2 = ~2

2m
π2

L2 (22 + 12 + 12) = 5
3
ε1) there will be nothing special

about the groundstate, that the other low-lying 1-particle states will be occupied nearly as
much. (e.g. for 4He in (1cm)3, this is ∆ε/kB ∼ 10−14K.)

This classical expectation is dramatically wrong. We must remember that µ(T ) is deter-
mined from N by

N =
∑
α

〈nα〉 =
∑
α

1

e(εα−µ)/kBT − 1
.

What’s the chemical potential at T = 0? At T = 0,

N = lim
T→0
〈n1〉 = lim

T→0

1

e(ε1−µ)/kBT − 1
.

Getting a big answer (like N) from the RHS requires e(ε1−µ)/kBT ∼ 1; this means we can
Taylor expand the exponential. In particular, it requires

1

N
!

= e(ε1−µ)/kBT − 1 ≈ 1 +
(ε1 − µ)

kBT
− 1 =⇒ (ε1 − µ) /kBT =

1

N
+ ...

=⇒ µ(T → 0) = ε1 −
kBT

N︸︷︷︸
small!

.
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The chemical potential for bosons at zero temperature is just infinitesimally below the energy
of the lowest single-particle level.

N = 〈n1〉+
∑
α≥2

〈nα〉

= 〈n1〉+

∫ ∞
ε2≈0

dεD(ε)
1

e(ε−µ)/kBT − 1
.

We need to talk about the lower limit of the integral here: really the lower limit should be
ε2. But ε2 ∼ 1

L2 → 0 as the box becomes large. Also, you may find comfort in the fact that
(in 3 dimensions) D(ε = 0) = 0. Actually, it only matters that D(ε→ 0) is finite: even if we
do let the integral go all the way to zero, the one point ε = 0 contributes with zero measure
to the integral. If the classical intuition were correct, we wouldn’t need to do this, but ...
we do need to do it, as Einstein was the first to realize.

Suppose (guess and check):

〈n1〉 =
N

b
a fraction of N , finite as N →∞

The important part here is that b is independent of N .

What is µ?

lim
T→0
〈n1〉 = N =⇒ µ = ε1 −

kBT

N/b
∼ 0

This means we can set µ = 0 in the integral over states, and do the integral:

N =

∫ ∞
0

dε D(ε)︸︷︷︸
= V aε1/2

1

eβε − 1
+
N

b

a =
1

4π

(
2m

~

)3/2

=
1

2
that of spin-

1

2
fermions; these are spin 0 bosons

= V a

∫ ∞
0

√
εdε

eβε − 1
+
N

b

= V a (kBT )3/2︸ ︷︷ ︸
T→0→ 0 X

∫ ∞
0

√
xdx

ex − 1︸ ︷︷ ︸
=1.306

√
π= 1

2
ζ( 3

2)
√
π

+
N

b

With our guess, we have N = 〈n1〉+ 2.612V

(
mkBT

2π~2

)3/2

︸ ︷︷ ︸
<N?

Does the guess make sense? Yes, as long as the second term is less than N , in particular, it
has to be (1− 1/b)N . If not, then the guess is wrong. This is a condition on T .
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Def: TB ≡ T such that
∑
α≥2

〈nα〉 = N

=⇒ TB =

(
2π~2

mkB

)(
N

2.612V

)2/3

.

For T < TB, the ‘Bose temperature’, the
guess is self-consistent, and µ = 0.

For T > TB, µ < 0, and we have to redo
the integral. (A useful characterization of
TB starting from high temperature is the
temperature where µ→ 0.)

For T < TB: 〈n1〉+

(
T

TB

)3/2

N = N

=⇒ 〈n1〉 = N

(
1−

(
T

TB

)3/2
)

.

The word ‘condensate’ here denotes a macroscopic number of particles in the same quantum
state.

For T < TB, a finite fraction of the particles are in the 1-
particle groundstate. The rest are distributed according
to the Bose-Einstein distribution.

Where have we seen TB before? Notice that

at T = TB =
h2

2πmkB

(
N

2.612V

)2/3

,

λth =
h√

2πmkBT
= 2.6121/3

(
V

N

)1/3

T < TB is the criterion for the failure of classicality (up to the same order-one uncertainty
as earlier).
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Energy and specific heat

For T < TB: E = ε1︸︷︷︸
=0

+

∫ ∞
0

dεD(ε)ε

eε/kBT − 1
∼ T 5/2

by the same kind of scaling analysis that you are good at by now (let x ≡ ε/kBT ...). More
precisely,

E ' 0.770

(
T

TB

)3/2

NkBT � 3

2
NkBT (the classical answer).

Note that therefore at high T , E must approach Eclassical = 3
2
NkBT from below. That means

that CV decreases to the classical value – it approaches 3
2
NkB from above.

Note that there are sharp bends in these curves at T = TB – “non-analyticities” where the
derivative (or some higher derivative) blows up. It is therefore called a (continuous) phase
transition.
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Comments about Bose-Einstein condensation

• An important fact about it that I can’t explain well in terms of things we’ve learned
so far: the resulting state is a superfluid. Roughly, this means that even when the
stuff moves, there is no dissipation of energy by the fraction of the atoms sitting in the
groundstate, no friction; the only source of friction is from changing the state.

• This condensation phenomenon was predicted by Einstein in 1924 as a result of his
role as the editor, referee and translator (from English into German) of a paper by
S. Bose describing blackbody radiation by counting states of non-interacting bosons.
He published his results with those of Bose as ‘a note from the translator’.

• In 1937, superfluidity in liquid 4He was observed:

(This is called the ‘λ-transition’ because of the shape of this curve.) The dashed line
is the ideal bose gas result discussed above – it predicts TB = 3.15K at the relevant
density, using m4He . Interactions matter (hence ‘liquid’ not ‘gas’).

• Efforts to cool bosonic atoms to temperatures below their TB are problematized by the
fact that many collections of atoms aren’t gases at such low temperatures and high
enough densities. The fact that TB ∝ 1

m
led people to try hydrogen for a long time

(since the 1970s) – the relevant number turned out (in 1998) to be TB ∼ 50µK. This
led people (many of them at MIT) to invent clever new cooling techniques. Other
kinds of atoms (Rb, Na) turned out to be easier to cool (by laser cooling), and they
condensed first, in 1995, at a couple of µK.

• How do they tell that the bosons condense? This takes advantage of the fact that
their bosons are not particles-in-a-box, but are trapped in a (approximately) harmonic
potential made from lasers. Turning off the laser trap lets the particles propagate
freely. Shining light on them, they cast a shadow. The lowest-energy state of the well

9-37



has small momentum and the particles occupying it, when released, don’t travel far,
and therefore cast a dark shadow in the center of the cloud. The picture on the cover
of Baierlein is a 3d plot of the darkness of the shadow (from the Colorado group).
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The last page.

This is the end of 8.044.

The next topics demanding to be studied are the grand canonical ensemble (what happens
if we fix µ instead of N?) and the theory of phase transitions.

Surely you agree now that many particles can do things that a few particles cannot do (more
is indeed different). The kinds of connections we’ve made between macroscopic phenomena
and microscopic models, and the techniques we’ve developed for doing so are useful in every
kind of physics and in lots of other subjects, too.

Special thanks to those of you who brought typos to my attention or asked questions that
helped improve the notes.
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