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Please remember to put your name at the top of your homework.

Announcements

• The 215C web site is:

http://physics.ucsd.edu/∼mcgreevy/s13.

Problem Set 1

1. Scale invariant quantum mechanics

Consider the action for one quantum variable r ∈ IR+

S[r] =

∫
dt

(
1

2
mṙ2 − V (r)

)
, V (r) =

λ

r2
.

[Note: relative to earlier versions of this problem set, I’ve restored the (non-relativistic)
mass parameter m. It can be eliminated by a multiplicative redefinition of the field r
or of the time t. You should convince yourself that the physics of interest here should
only depend on mλ.]

(a) Show that the coupling λ is dimensionless: [λ] = 0.

(b) Show that this action is scale invariant, i.e. show that under the transformation

r(t)→ sα · r(st) (1)

(for some α which you must determine), s ∈ IR+ is a symmetry. Find the as-
sociated Noether charge D. For this last step, it will be useful to note that the
infinitesimal version of (1) is (s = ea, a� 1)

δr(t) = a

(
α + t

d

dt

)
r(t).
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(c) Find the position-space Hamiltonian H governing the dynamics of r. Show that
the Schrödinger equation is Bessel’s equation(

− ∂2
r

2m
+
λ

r2

)
ψE(r) = EψE(r).

Check that [H,D] = 0.

(d) Describe the behavior of the solutions to this equation as r → 0. [Hint: in this
limit you can ignore the RHS. Make a power-law ansatz: ψ(r) ∼ r∆ and find ∆.]

(e) What happens if 2mλ < −1
4

? It looks like there is a continuum of negative-energy
solutions (boundstates). This is another example of a too-attractive potential.

(f) A hermitian operator has orthogonal eigenvectors. We will show next that to make
H hermitian when 2mλ < −1

4
, we must impose a constraint on the wavefunctions:

(ψ?E∂rψE − ψE∂rψ?E) |r=0 = 0 (2)

There are two useful perspectives on this condition: one is that the LHS is the
probability current passing through the point r = 0.

The other perspective is the following. Consider two eigenfunctions:

HψE = EψE, HψE′ = E ′ψE′ .

Multiply the first equation by ψ?E′ and integrate; multiply the second by ψ?E and
integrate; take the difference. Show that the result is a boundary term which
must vanish when E = E ′.

(g) Show that the condition (2) is empty for 2mλ > −1
4
. Impose the condition

(2) on the eigenfunctions for 2mλ < −1
4
. Show that the resulting spectrum of

boundstates has a discrete scale invariance.

[Cultural remark: For some silly reason, restricting the Hilbert space in this way
is called a self-adjoint extension.] 1

(h) [Extra credit] Consider instead a particle moving in IRd with a central 1/r2 po-
tential, r2 ≡ ~x · ~x,

S[~x] =

∫
dt

(
1

2
m~̇x · ~̇x− λ

r2

)
.

Show that the same analysis applies (e.g. to the s-wave states) with minor modi-
fications.

[A useful intermediate result is the following representation of (minus) the lapla-
cian in IRd:

~p2 = − 1

rd−1
∂r
(
rd−1∂r

)
+
L̂2

r2
, L̂2 ≡ 1

2
L̂ijL̂ij, Lij = −i (xi∂j − xj∂i) ,

where r2 ≡ xixi. By ‘s-wave states’ I mean those annihilated by L̂2.]

1This model has been studied extensively, beginning, I think, with K.M. Case, Phys Rev 80 (1950) 797.
More recent literature includes Hammer and Swingle, arXiv:quant-ph/0503074, Annals Phys. 321 (2006)
306-317. It also arises as the scalar wave equation for a field in anti de Sitter space.
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2. Gaussian integrals are your friend

(a) Show that ∫ ∞
−∞

dxe−
1
2
ax2+jx =

√
2π

a
e

j2

2a .

(b) Consider a collection of variables xi, i = 1..N and a hermitian matrix aij. Show
that ∫ N∏

i=1

dxie
− 1

2
xiaijxj+Jixi =

(2π)N/2√
det a

e
1
2
Jia−1

ij J
j

.

(Summation convention in effect, as always.)

[Hint: change into variables to diagonalize a. det a =
∏
ai, where ai are the

eigenvalues of a.]

(c) Consider a Gaussian field X, governed by the (quadratic) action

S[x] =

∫
dt

1

2

(
Ẋ2 − Ω2X2

)
.

Show that
〈e−

∫
dsJ(s)X(s)〉X = N e+ 1

4

∫
dsdtJ(s)G(s,t)J(t)

where G is the (Feynman) Green’s function for X, satisfying:(
−∂2

s + Ω2
)
G(s, t) = δ(s− t).

Here N is a normalization factor which is independent of J . Note the similarity
with the previous problem, under the replacement

a = −∂2
s + Ω2, a−1 = G.
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