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Problem Set 7

1. Large-N saddle points [extra credit] [from Halpern]

Consider the partition function for an N -vector of sscalar fields in D dimensions

Z =

∫
[Dφ]eiS[φ], S[~φ] =

∫
dDx

(
1

2
∂φa∂φa −NV

(
~φ2

N

))

with a general 2-derivative O(N)-invariant action. We’re going to do this path integral
by saddle point, which is a good idea at large N . As usual, the constant prefactors in
Z drop out of physical ratios so you should ignore them.

(a) Change variables to the O(N) singlet field ζ ≡ ~φ2/N by inserting the identity

1 =

∫
[Dζ]δ

[
ζ −

~φ2

N

]

into the path integral representation for Z. Represent the functional delta function
as

δ

[
ζ −

~φ2

N

]
=

∫
[Dσ]ei

∫
dDxσ(~φ2−ζN).

Do the integral over φa to obtain

Z =

∫
[DζDσ]eiNSeff[ζ,σ].

Determine Seff[ζ, σ].

(b) The integrals over ζ, σ have a well-peaked saddle point at large N . Obtain the
coupled large-N saddle point equations for the saddle point configurations ζ0, σ0,
and in particular the equation

ζ0(x) =

(
i

−�− 2V ′(ζ0)

)
xx

(the subscript denotes a matrix element of the position-space operator).
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(c) [more optional] Show that

δ

δσ(x)
tr log (−� + σ) =

(
1

−� + σ

)
xx

by Taylor expansion.

(d) At large N , we know that

ζ0(x)
N→∞

= 〈
~φ2(x)

N
〉 = ζ0, constant.

Use this to show that the saddle point equation is the gap equation

ζ0 =

∫
d̄DkE

1

k2
E + 2V ′(ζ0)

which determines ζ0, the expectation value of the order parameter 〈~φ2/N〉.
(e) What class of diagrams did you just sum?

(f) Toy model emphasizing the similarity to our discussion of BCS. You
might be worried that in the discussion of BCS I didn’t introduce the analog of ζ
(which is the actual pair field). In this small, very optional, sub-problem I want
to show that what we did there is the same as what we did here. Consider the
integral

Z =

∫
d2x e−a|x|

2−u|x|4 ;

here x is a proxy for the fermion field ψ, but it is just a complex number. Now
we insert

1 =

∫
d2ζ δ[ζ − x2]δ[ζ̄ − x̄2] =

∫
d2ζ

∫
d2σ eiσ̄(ζ−x

2)+iσ(ζ̄−x̄2)

to find

Z =

∫
d2ζ

∫
d2σe−u|ζ|

2+i(σζ̄+σ̄ζ)
∫

d2x e−a|x|
2−iσ̄x2−iσx̄2

Do the x integral and find

Z =

∫
d2ζ

∫
d2σe−u|ζ|

2+i(σζ̄+σ̄ζ)−log(a2−|σ|2) .

Now we can do the ζ integral to get

Z =

∫
d2σe−

1
u
|σ|2−log(a2−|σ|2)

which is what we would have found using the usual HS trick as described in
lecture. The relationship between ζ and σ on-shell (i.e. at the saddle point of the
(gaussian) ζ integral) is ζ ∼ iσ, but really they are conjugate variables. Now do
the σ integral by saddle point to find the analog of the gap equation for this 0+0
dimensional QFT.
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(g) [super-optional] Show that the BCS interaction is a marginally relevant pertur-
bation of the Fermi liquid fixed point(s). (For help, see the papers by Polchinski
or by Shankar cited in the lecture notes.)

2. Chiral anomaly in two dimensions. [extra credit]

Consider a massive relativistic Dirac fermion in 1+1 dimensions, with

S =

∫
dxdtψ̄ (iγµ (∂µ + eAµ)−m)ψ.

By heat-kernel regularization of its expectation value, show that the divergence of the
axial current j5

µ ≡ iψ̄γmuγ5ψ is

∂µj
5
µ = 2imψ̄γ5ψ +

e

2π
εµνF

µν .

3. Topological terms in QM [extra credit] [from Abanov]

The euclidean path integral for a particle on a ring with magnetic flux θ =
∫
~B · d~a

through the ring is given by

Z =

∫
[Dφ]e−

∫ β
0 dτ(m2 φ̇2−i θ

2π
φ̇) .

Here
φ ≡ φ+ 2π (1)

is a coordinate on the ring. Because of the identification (1), φ need not be a single-
valued function of τ – it can wind around the ring. On the other hand, φ̇ is single-valued
and periodic and hence has an ordinary Fourier decomposition. This means that we
can expand the field as

φ(τ) =
2π

β
Qτ +

∑
`∈ZZ

φ`e
i 2π
β
`τ . (2)

(a) Show that the φ̇ term in the action does not affect the classical equations of
motion. In this sense, it is a topological term.

(b) Using the decomposition (2), write the partition function as a sum over topological
sectors labelled by the winding number Q ∈ ZZ and calculate it explicitly.

[Hint: use the Poisson resummation formula

∑
n∈ZZ

e−
1
2
tn2+izn =

√
2π

t

∑
`∈ZZ

e−
1
2t

(z−2π`)2

. ]

(c) Use the result from the previous part to determine the energy spectrum as a
function of θ.

(d) [more optional] Derive the canonical momentum and Hamiltonian from the action
above and verify the spectrum.
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(e) Consider what happens in the limit m → 0, θ → π with X ≡ θ−π
M
∼ β−1 fixed.

Interpret the result as the partition function for a spin 1/2 particle. What is the
meaning of the ratio X in this interpretation?

The lesson here is that (even in this simple QM example) total derivative terms in the
action do affect the physics.

4. Geometric Quantization of the 2-torus. [extra credit]

Redo the analysis that we did in lecture for the two-sphere for the two-torus, S1× S1.
The coordinates on the torus are (x, y) ' (x+2π, y+2π); useNdx∧dy as the symplectic
form. Show that the resulting Hilbert space represents the heisenberg algebra

eixeiy = eiyeixe
2πi
N .

(I am using boldface letters for operators.) The irreducible representation of this
algebra is the same Hilbert space as a particle on a periodic one-dimensional lattice
with N sites.

5. Particle on a sphere with a monopole inside. [extra credit]

Consider a particle of mass m and electric charge e with action

S[~x] =

∫
dt

(
1

2
m~̇x2 + e~̇x · ~A(~x)

)
constrained to move on a two sphere of radius r in three-space, ~x2 = r2. Suppose
further that there is a magnetic monopole inside this sphere: this means that 4πg =∫
S2
~B · d ~A =

∫
S2 F , where F = dA. (Since the particle lives only at ~x2 = r2, the form

of the field in the core of the monopole is not relevant here.)

(a) Find an expression for A = Aidx
i = Aθdθ+Aϕdϕ such that F = dA has flux 4πg

through the sphere.

(b) Show that the Witten argument gives the Dirac quantization condition 2eg ∈ ZZ.

(c) Take the limit m → 0. Count the states in the lowest Landau level. It should
agree with the result from lecture.

6. Coherent state quantization [extra credit]

(a) Start with first order action S =
∫

dt z†αżα. Show that the Hamiltonian is H = 0.

(b) Check the completeness relation in the spin 1/2 coherent state basis.

(c) Show that different spinor representations, i.e. different choices of ψ in

z =

(
ei(ψ+ϕ/2) cos θ/2
ei(ψ−ϕ/2) sin θ/2

)
shift the coefficient of the total derivative ϕ̇ part of the WZW functional.
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