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Pair Creation in an Electric Field

An interesting result of vacuum polarization is the possibility of pair creation of charged 
particles at sufficiently high field strength. This can be viewed as a tunneling process in which the 
particles tunnel through a barrier of depth 2m to a region where the classical potential due to the gauge 
field is -2m. The results for QED were derived by Schwinger in 1950.

Consider a Dirac fermion field ψ coupled to a spin 1 gauge field Aμ in 3 + 1 dimensions as we 
have in quantum electrodynamics. Consider the vacuum to vacuum process in the presence of an 
external field. The amplitude for this process is 

The probability for this process, that is for no pair creation, is

So the probability that a pair of fermions will be created is approximately twice the imaginary part of 
the effective action.

To get an expression for W, we write Z as a functional determinant and replace the determinant 
by the exponential of a trace of a log. Subtracting off the zero external field contribution, we have

By taking the transpose inside the trace and applying the identity γ μ
T
=−Cγ μ C−1 , where C is charge 

conjugation, we can rewrite the effective action as 

Summing the two expressions, we get, W [A]=
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Now we use an integral representation of the log in order to evaluate the trace:

Removing the spatial integrals involved in taking the trace and taking twice the imaginary part, we 
arrive at the probability density for pair creation, w(x). While before Tr represented a trace over spacial 
states and spinor indices, tr will represent the trace over only spinor indices.

Where σ μν=
1
2

i [γ μ ,γ ν ] .  From here, the specific form for the background field A is used to 

complete the calculation. For constant electric or magnetic field, we may boost into the frame where 
the field is either purely magnetic or purely electric. In the magnetic case, W is purely real and no pair 
creation process may occur. In the electric case, chose a frame where in one spatial component A = Et 

Z [ A]=eiW=∫[d ψ ][dψ ]exp [∫d 4 xψ [γ⋅(P−eA)−m+iϵ ]ψ ]
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and in all others A = 0. By use of a complete set of momentum states on either side of the operator in 
the matrix element, we may reduce the problem to that of calculating the trace of the time evolution 
operator of a simple harmonic oscillator with imaginary frequency 2ieE. The integral over s may be 
completed using a Wick rotation to the imaginary axis. We end up with the nonperturbative result

Each term in the sum is suppressed by higher powers of exp(-m2/|eE|2). This is related to the result we 
expect from treating this as a tunneling process. The system starts at the energy -2m and tunnels 
through a distance 2m/|eE| to reach another classical turning point. The WKB amplitude for this process 
is 

This gets the essential factor right, but only predicts the first term in the series found for the probability. 
The ratio m2/|eE| can also be thought of as the creation energy 2m over the work done by the field 
moving the charge over a Compton wavelength, |eE|·1/m. This may be thought of as the work done to 
bring the particles on shell.

Pair creation is difficult to observe directly because of the strength of electric field required. To 
reach a ratio m2/|eE| of order 1 for electrons, the electric field must be 107

 times larger than that found in 
a hydrogen atom at the typical location of an electron.

The essential part of the result, that the probability density is suppressed by a sum of 
exponentials of -m2/|eE|, is independent of the fields being fermionic and of the dimensionality of the 
field theory. For scalar bosons in 3 + 1 dimensions, the probability is

For fermions in 2 + 1 dimensions, the probability becomes

This is unsurprising because the tunneling argument remains unchanged, and the particles are subjected 
to the same classical potential in the electric field.
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