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In this paper Witten’s proceudre of non-abelian bosonization in 1+1 dimensions reviewed, CFT
algebra of currents briefly described as well as applications to half-integer spin chain systems and
Hubbard model at half-filling.

INTRODUCTION

Sometimes it’s good to have a choice between lan-
guages in terms of which talking about 1+1D systems-
phenomenas might become looking easier and semiclasi-
cal if translated from fermi to bose language.

So the first section is a ”vocabulary” of doing those
translations whereas the second might serve as an intro-
ductory ”phrasebook”.

NON-ABELIAN BOSONISATION

A non-abelian bosonisation introduceed by Witten in
1983 [1] allows to translate any fermi theory into local
bose theory while having all of the original symmetries
conserved. And of course, the equivalence can be pro-
liferated to interacting terms and perturbations can be
nicely converted too. This was a major improvement
compared to the usual bosonisation procedure that would
allow to transform only local fermi fields to local bose
fields and wouldn’t respect symmetries, making newly-
made off-diagonal bose currents some complicated non-
local expressions.

Let’s take look at Lagrangian for free massles Dirac
fermions in 1+1D:

L = ψ̄†i iγµ∂
µψi(x) (1)

It is scale-invariant and has a fixed point under RG,
which are important points for future purposes. We
might stick in some arbitrary number of indices in fields,
suppose 2N of them. Then it has two gauge symmetries-
U(1)×U(1) and SU(N)×SU(N) [or just a big one- O(2N)
× O(2N), because O(2N) ' U(1) × SU(N)] and corre-
sponding currents:

JR = ψi†Rψ
i, JL = ψi†Lψ

i (2)

JaR = ψi†R t
a
ijψ

j , JaL = ψi†L t
a
ijψ

j (3)

Applying anticommutation relations for fermi fields
one could come up with relations

[JaR(x), JaR(y)] = ifabcJcR(x)δ(x− y) + i
k

4π
δabδ′(x− y)

[JaL(x), JaL(y)] = ifabcJcL(x)δ(x− y) + i
k

4π
δabδ′(x− y)

where fabc are structure constants of the tas- generators
of the SU(N). Currents form a Kak-Moody current CFT
algebra, which in our case appears to be ”level-1” as k =
1 (which should be integer for well-behaveness).

Now, conservation laws:

∂−J
ij
R = 0, ∂+J

ij
L = 0 (4)

where the so-called light-cone components used with
x± = (x0 ± x1)/

√
2. Here is a crucial moment- a set

of bosonic fields with the same symmetries and current
algebra needed. First, let’s try to satisfy the conservation
relations:

JR(x) =
i

2π
g−1(x)∂+g(x), JL(x) = − i

2π
(∂−g(x))g−1(x)

(5)
where g ∈ SU(N). We are heading towards bosonised

field theory that is a non-linear sigma model whose fields
taking values on a compact Lie group [SU(N)] for every-
point of space-time. A non-linear sigma model field tak-
ing values on a group manifold is known as the prin-
cipal chiral field. Such matrix-valued field has doubled
GL × GR symmetry [g(x) → hLg(x)h1R] which generate
two chiral currents. What Lagrangian will govern g? It
is tempting to say

L =
1

4λ2
Tr∂µg∂µg

−1 (6)

which is the only renormalizable and chirally-invariant
choice in 1+1D. But since the RG beta-function is non-
vanishing, it’s not scale-invariant and since beta-function
is positive [for G=SU(N)], it’s asymptotically free which
means it has a non-vanishing mass gap and cannot be
equivalent to the massless fermions theory.

However there is another renormalizable term which is
not so manifestly chirally invariant though. Let’s con-
sider the theory in Euclidian 2D space-time that is iso-
morphic to S2 and thus field configurations are maps



2

S2 → G. We could deal with them as with boundary con-
ditions on a one-extra-dimensional field ḡ(y), smoothly
extended into a bulk [who is a ball B, the interior of S2],
which is allowed since the maps are trivial and have a
trivial homotopy group. Arising Wess-Zumino piece of
action is given by

Γ[g] =
1

24π

∫
B

d3yεijkTrḡ−1∂iḡḡ
−1∂j ḡḡ

−1∂kḡ (7)

which is defined only modulo 2π, Γ → Γ + 2π due to
topologically inequivalent ways to extend a configuration
g(x) from S2 to the ball B. The correct non-linear sigma
model has the action:

L =
1

4λ2
Tr∂µg∂µg

−1 + nΓ[g] (8)

where coupling constant n ∈ Z for single-valuedness of
the path-integral. The action is known as the Wess-
Zumino-Witten (WZW) model of level n [and secretly
it is equal n = k to a level of associated Kac-Moody
algebra]. It is both renormalizable and scale invariant
[win!] and is exactly solvable with CFT (Knizhnik and
Zamolodchikov, 1984) [2].

To make sure the WZW model to be equivalent to a
theory of free fermions, we should find a fixed point for
some λ and n. A one-loop computation [1] yields for G
= SU(N)

β(n, λ) =
N

4π
λ2
[
1−

(
λ2n

4π

)]
(9)

providing the following picture of charge flow:

This result predicts a stable fixed point at a critical
value of the coupling constant λ2c = 4π/k and it has been
proved [2] that this is indeed exact.

Upon constraction of currents for WZW model, their
Kac-Moody ”level-n” algebra structure reveals [what a
coincidence!] and from agreement with fermion cousins
it follows that n = k = 1. Finally, a theory of N
free Dirac fermions is equivalent to an SU(N)1 ”level-
1” WZW model at its fixed point and a U(1) free boson
what is being reflected in two terms of a full action:

S =

∫
d2x

1

2
(∂µφ)2 + Sk=1

WZW [g] (10)

APPLICATIONS OF NON-ABELIAN
BOSONISATION

Now, applications to spin chains and 1D Hubbard
model [which is roughly the same as a chain + random-
ness of distribution of particles on sites + arbitrariness of
filling factor + scattering abilities]. In the weak-coupling
regime those are equivalent to a theory of N = 2 Dirac
fermions. The full action undergoes decomposition into
charge and spin sectors with U(1) and SU(2)1 [it’s spin
1/2] symmetries respectively.

S =

∫
d2x

1

2
(∂µφc)

2 + Sk=1
WZW [g] (11)

The profit is that we can now study RG properties,
mass/gap generation of the two sectors kind of separately
from each other with the spin sector at low energies de-
scribed by the SU(2)1 WZW model fixed point. This is
a valid description for 1D Hubbard model at half-filling
and at the same time 1D spin-1/2, and even more gen-
erally, all half-integer quantum antiferromagnets at low
energies. Due to the charge gap, charge degrees of free-
dom can be effectively decoupled and projected out, so
we don’t care about them.

For a much more detailed discussion please turn to
Chapter 7 of Fradkin [3].
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