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In this paper I will review the methods of constructing and understanding quantum spin liquids:
projective constructions and their emergent gauge theories. Such constructions involve the separa-
tion of electronic degrees of freedom into uncharged spin (spinon) and charged spinless (chargon)
quasiparticles. The physicality of these degrees of freedom is intimately connected to the role of
confinement when coupled with the gauge field describing their dynamics. Focus will be on the case
of an emergent U(1) gauge theory in D = 2 + 1.

INTRODUCTION

Studying strongly-correlated systems is hard. For
some direction of the causality, this also implies they are
very interesting. These systems often entail very strange
behavior which, on some good days, may even be shown
to exist in our world. One such example I would like to
discuss is the ’quantum spin liquid’. [15]

It is a ’liquid’ because, despite whatever sadistic re-
ductions in temperature or application of pressure, it re-
mains in a disordered state and does not undergo any
phase transition. It is ’spin’ simply because it is usu-
ally a system of interacting spins and this spin-rotational
symmetry remains preserved. Finally it is ’quantum’ be-
cause explaining why such a thing could ever exist in-
volves quantum mechanics.

A good question to ask then is, does a such a thing
exist? Maybe Herbertsmithite.[7] For those of us con-
tent with lattice simulations the answer is yes. Another
question to ask, why should we care? Much more eas-
ily answered! Spin liquids carry unique excitations, such
as a neutral spin-1/2, and possibly fractional statistics,
which correspond to ’topological order’. [16]

The existence of topological order in FQHE is under-
stood (arguably) and is a feature of systems with long-
range entanglement and a ground state degeneracy which
depends on topology.1 Topological order provides us
a criterion for distinguishing distinct phases from each
other, even in the absence of a broken symmetry such as
these spin liquid phases. Another reason to consider such
systems is they are models for some of the properties of
high-Tc superconductivity.[1]

If I have sufficiently interested you then, let us begin
by building such a state and exploring its difficulties.

1 Probably one of the better reasons to name such a thing topo-
logical. The other is the use of Chern-Simons terms to describe
long-wavelength behavior.

PROJECTIVE CONSTRUCTIONS

Let us begin life on the lattice, specifically one that is
square and in d = 2. Here we can consider the SU(2) 2

Heisenberg S = 1 model:

H = J
∑
<ij>

Si · Sj (1)

Now suppose we would like to attempt some form of
mean field theory on (1), replacing a spin operator with
some expectation value 〈Si〉. This however is rather pre-
sumptuous: it will only be effective if in some ordered
state where the fluctuations of Si are small. We’re inter-
ested in a disordered phase.

Rather than go home in defeat let us be more clever in
how we express Si. Let us define ’spinon’ operators: fiα
for α ∈ {1, 2}.

Now we can decompose the otherwise bosonic spin op-
erator into uncharged spin-1/2 fermions as follows:

Si =
1

2
f†iασαβfiβ (2)

Are we free to simply do this? Clearly we have enlarged
our Hilbert space to include these seemingly fictious op-
erators, certain sectors of which will be fictitious to any
physically meaningful quantities. What we must do then
is impose a local constraint on these operators to reduce
to one DOF per site:

f†iαfiα = 1 (3)

Now we can approach mean field theory on the follow-
ing operator:

〈f†iαfjα〉 = χij = χ0e
−iAij (4)

2 It is important to note that SU(2) here is a global symmetry and
not a gauge either now or in the future.
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The second equality is chosen with some foresight. We
may now rewrite our Hamiltonian (1) as:

HMF = −J
∑
<ij>

f†iαfjαχ0e
−iAij +h.c.−

∑
i

A0(f†iαfiα−1)

(5)
Where here the A0 acts as a Lagrange multiplier to

enforce (3). It also not hard to check that this theory is
invariant under the gauge transformations:

Aij → Aij + (θi − θj) fi → fie
−iθi (6)

Thus we have an emergent U(1) gauge theory in the
mean-field excitations!3 The gauge boson mediates the
interaction between spinons and should ’glue’ them to-
gether to create the original bosonic spin.[9]

What can we say about the results of this method? We
need a sanity check. If these spinon excitations are al-
ways paired off in close proximity to each other, if they’re
confined, then we would expect that the results we get
from this more fancy mean field calculation would be
identically that of the standard calculation.

In this case the spinon pairs are the only low en-
ergy excitation and the dynamics of the gauge field
are irrelevant.[11] Good, but useless in describing new
physics.4

What we would like then is to understand the decon-
fined phase and when such a phase is stable, which turns
out to be a very tricky question.

CONFINEMENT

Let us retreat from this discussion of spin liquids and
focus momentarily on the problem of confinement in elec-
trodynamics.

Here it is necessary we make the distinction between
compact U(1) gauge and what’s called non-compact U(1)
gauge theory.5

What does gauge compactness do for us? Well you may
recall that a compact U(1) theory realizes topological
defects in the form of magnetic monopoles and this is
responsible for the quantization of charge.

Connected between a monopole/anti-monopole pair is
a string defect where the gauge field is no longer exact.

If I compute the holonomy about this string then I get
some measurable phase: ei

∮
A·dx = e2πeq where here e

and q are the electric and magnetic charges respectively.

3 The gauge kinetic term has g = ∞ and does not appear explicitly
4 A confining ground state is not unreasonable however
5 For those worried that the circle is no longer the circle what is

actually going on is that the Lie group of the non-compact theory
is R under addition. They share the same Lie algebra so it isn’t
so bad of a name.

In a sane universe I need this phase to vanish exactly so
the product of charges needs to be an integer. The string
defect is no longer physical and can be moved around by
gauge transformation.[17]

Good. In materials, and indeed in our universe at
large, the electric charge does appear to be quantized.6

Indeed it appears the photon doesn’t have a mass either
so it would appear we live in an electrically deconfined
phase. Is this true in general?

Suppose, for some strange reason, we would like to
study the case of electrodynamics in d = 2. For a moment
let us consider just a pure compact gauge theory without
matter fields.

It is a famous result of Polyakov that in this case the
photon is always gapped and, at all strengths of the cou-
pling, the theory is in an electrically confining phase.[14]

Indeed this result is a direct consequence of our once
friend the monopole. The appearance of monopoles in
compact U(1) gauge theory is an example of an instan-
ton effect: a critical point of the Euclidean action which
connects topologically distinct vacuum states of the clas-
sical theory.

In the path integral formulation of quantum mechan-
ics, with a double well potential, these take the form of
kink solutions which allow for tunneling between the two
wells, a result invisible to naive perturbation theory. [2]

For definiteness, the Euclidean U(1) gauge theory is
expressed as:

LU(1) = 1
g2FµνF

µν Bµ = εµνλF
νλ (7)

But let’s not stop there; consider a dual description of
this theory using the XY model:

LXY = g2(∂µσ)2 Bµ = g2∂µσ (8)

Now we can relate the Maxwell equation ∂µB
µ = 0 to

the equation of motion for the dual photon: ∂2σ = 0. 7

But wait, the whole point is to allow for the fluctua-
tions of instantons!

These correspond to ∂µB
µ 6= 0 and the insertion of

some quantized flux:
∮
~B · d ~A = 2πq.

In the XY model the insertion/removal of this flux cor-
responds to the following operator(s): e±iσ

Adding both of these operators to (8) in equal weight
gives us:

LXY = g2(∂µσ)2 +K cos(σ) (9)

6 It is actually the case that any U(1) gauge theory embedded in
some larger gauge group, such as SU(2), must be compact.

7 For those curious about this map we have abused Hodge duality
by ?dA = dσ and also common convention by denoting B as the
Maxwell form but there’s no matter here so no E. Also bouncing
around are some silly factors of 2.
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Here the coefficient K is proportional to the energy
of the monopole configuration. This interaction term is
now what gaps out the dual photon. A simple momentum
space RG calculation will also show this term is relevant
in D = 3 to all strengths of the coupling g.[8]

For a picture of what’s happening here we can make the
analogy to a charged plasma. Unlike the case of D = 2
there is no Kosterlitz-Thouless transition possible8 and
thus it will remain in the Coulomb phase. Through De-
bye screening of the fields it provides an effective mass
for the dual photon.[4]

So how bad is it? If we think about a pair of electri-
cal test charges of opposite sign, this corresponds to an
vortex/anti-vortex pair in the XY model.

In the presence of the cos(σ) term, the energy of the
configuration to grow linearly in separation scaled by the
mass of the dual photon.9 This is opposed to the usual
logarithmic potential one would expect. [16]

SURVIVAL OF THE SPINNIEST

Things are looking fairly pesimistic for at least those
U(1) spin liquids in D = (2 + 1).10 By the above ar-
gument it would seem that our spinon excitations are
doomed to a destructively codependent relationship.

However, there is the effect of matter fields which I
have so far neglected. This gives the photon the oppor-
tunity to spend a portion of its life as a pair of spinons
via vacuum polarization corrections. This then adjusts
the potential between a spinon pair to something less
confining through the running of the gauge coupling.[10]

When is this enough to provide a stable spin liquid?
It is a fairly subtle thing to extract. Indeed, several have
argued in the past that the monopole effect will always
overtake other contributions.[6]

The most recent calculations however have shown that
in a 1/N -expansion in the number of spinon flavors11 the
model goes to a stable deconfined fixed point for large
N .[8]

Is there a finite value of N should we expect this to be
stable? Here there is more variety. One calculation places
the number around N = 1.1, and there is a recent hard
upper bound of N = 6, but the question of whether the
important SU(2) spin model is stable remains open.[13][5]

8 Much to the disappointment of Dan Arovas
9 This scaling is referred to as the string tension of the flux tube

connecting the vortex/anti-vortex.
10 It is worth mentioning again that our spin liquids correspond

to compact theories though, if we can neglect instantons, it is
common to treat the theory in a non-compact limit

11 Consider (1) but allowing the spin index to run to N , S = N/2,
and a 1/N scaling of the coupling.

Of course we shouldn’t be so pessimistic about this
business. The effect of instantons is restricted to d =
2, though it is an important case for condensed matter.
General principles for what allows a U(1) spin liquid to
be stable are still unknown.

There’s still quite the variety in ’matter fields’ includ-
ing whether the spinons are gapless, whether bosonic
matter is included, and even the possibility of a spinon
fermi surface; U(1) spin liquids come in many flavors!12

There also other ways out which involve breaking the
U(1) gauge to some smaller discrete gauge theory and
creating topological order.

In 2d we have 2 options: the Anderson-Higgs mecha-
nism and the inclusion a Chern-Simons term.[3] The first
allows for a deconfining phase of the spinons in a manner
directly analogous to a superconductors and generates
the Z2 spin liquids.13 The possibility of adding a CS
term to a spin-1/2 model creates the so called chiral spin
liquid which carries fractional statistics.[15][16]

SUMMARY

Obviously there is a lot more that remains to be said
about spin liquid phases, including several open ques-
tions about their properties and stability. What we have
hopefully shown here though is that the projective con-
struction is a useful and interesting tool in exploring the
properties of novel phases of matter and that spin liquids
in particular have some significant overlap with issues
and ideas from high energy physics, particularly confine-
ment.
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