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The quirky properties of a deconfined quantum critical point are illustrated with a 2+1 dimen-
sional square antiferromagnetic lattice. Deconfined quantum critical points are distinct from critical
points described by Landau-Ginzberg theory, possessing emergent fractional excitations and a topo-
logical conservation law. The order parameters of the Néel ordered and valence bond solid (VBS)
phases of the lattice are found to possess a nonlocal topological relationship. Both phases are
described in terms of the emergent degrees of freedom at the critical point.

INTRODUCTION

Landau-Ginzberg theory successfully describes a wide
variety of phase transitions, including quantum phase
transitions at zero temperature. Deconfined quantum
critical points are a distinct class of phase transitions that
cannot be described with Landau-Ginzberg theory, dis-
tinguished by an emergent conserved topological quan-
tity at the critical point. A 2+1 dimensional antiferro-
magnetic lattice is considered, which undergoes a quan-
tum phase transition between the Néel and valence bond
solid (VBS) ordered phases. The Néel phase and VBS
phase break two different symmetries: SU(2) spin sym-
metry and translation symmetry. Landau theory predicts
a first order transition, or an intermediate phase contain-
ing a mixture of the Neel and VBS phases [3]. However,
a second order transition occurs, crucially dependent on
the quantum properties of the system, notably the Berry
phase of the spin. The nature of this critical point, as
well as the relationship between the order parameters of
the Néel and VBS phase, is investigated.

First, the Néel and VBS phases are introduced on
a 2+1 dimensional lattice. The topological defects
(monopoles) of the Néel phase are related to the mag-
netic flux of an emergent U(1) gauge field at the critical
point. The creation and annihilation of these defects is
found to be irrelevant at the critical point due to effects
of the Berry phase of spin, yielding a conserved topolog-
ical quantity. Topological defects (vortices) of the VBS
phase are found to be described by a spinor field coupled
to the emergent gauge field at the critical point. The
phase diagram is then described in terms of the fugacity
of monopoles and vortices.

NÉEL PHASE

Consider a 2+1 dimensional lattice with spins S = 1
2

at each site, with the antiferromagnetic Hamiltonian

H = J
∑
<ij>

~Si. ~Sj + . . . (1)

H has SU(2) spin symmetry and the translational sym-
metry of the square lattice. J > 0 is the antiferromag-

netic interaction strength. Additional terms not shown
are next-nearest neighbor interaction terms that can be
tuned to cause a phase transition. In the Néel phase, with
g → 0, these terms are small, so that only nearest neigh-
bor interactions are relevant, and the spins align antipar-
allel to their nearest neighbors . This causes the spins to
obtain an expectation value 〈~Si〉 = (−1)in̂ 6= 0, sponta-
neously breaking the SU(2) spin symmetry [5]. Here, n̂
is the Néel order parameter. The Néel phase has gapless
spin wave excitations.

The dynamics of the fluctuations of the Néel parameter
can be described with an O(3) nonlinear sigma model [4]

Sn =
1

2g

∫
dτdxdy

[
1

c2

(
∂n̂

∂τ

)
+ (∇n̂)2

]
+ SB [n̂]

with Berry phase action

SB [n̂] = iS
∑
j

(−1)xj+yjAj [n̂];

The Berry phase contribution from each site j alternates
in a checkerboard fashion. Aj is the area enclosed by the
path of n̂(τ) on the sphere in spin space. We will see that
this in fact has a relation to the order parameter of the
VBS phase, which breaks translational symmetry.

Besides spin waves, the Néel phase permits smoothly
varying topological configurations of n̂ called skyrmions
(see Figure 1). The (integer) number of skyrmions Q is
given by

Q =
1

4π

∫
dxdyn̂ · (∂xn̂× ∂yn̂) (2)

Now, imagine creating or destroying a skyrmion. This
requires a singularity in n̂(x, y, τ) at some point in space
and time, creating a monopole in spacetime. The Berry
phase associated with a monopole configuration is sig-
nificant, and oscillates from one site to the next on the
lattice. It can be shown [3] that the total berry phase for
a collection of monopole events is∏

n

ei
π
2 ζk∆Qk

Here k runs over all monopoles, ∆Qk = ±1 is the change
in Q associated with each monopole, and ζk ∈ Z4 de-
termines the alternating phase on each face of the lat-
tice (see Figure 2). For single monopole events that
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FIG. 1: A skyrmion of the Néel phase

FIG. 2: Berry phases of monopoles placed at each plaquette

change Q by 1, the Berry phases destructively interfere
and prevent single skyrmion changing events. However,
monopole events which change Q by multiples of 4 do not
destructively interfere and survive. As a result, quadru-
pled monopole events are the smallest number allowed.
The quadrupled monopole operator has a large scaling di-
mension, which causes it to be suppressed at the critical
point [3]. As we move away from the Néel phase towards
the critical point, it becomes convenient to write the Néel
order parameter n̂ in a spinor representation. This will
elucidate the fractionalized fields at the critical point. We
map n̂ ∈ S2 to

(
z↑
z↓

)
∈SU(2) using a Hopf transformation:

n̂ = z†a~σabzb

This map has a U(1) gauge redundancy z → eiα(~r,τ)z.
Therefore we can couple z to a U(1) gauge field aµ. The
“magnetic” flux of this gauge field turns out to be 2π×Q,
the skyrmion number. Whenever a skyrmion is created,
it changes the gauge flux by 2π. This is only allowed
when the gauge group U(1) is compact [4].

At the critical point, the monopoles become irrelevant.
This is because the Berry phase suppresses all monopole
events that are not quadrupled, and the quadrupled
terms have a large scaling dimension that make them
irrelevant at the critical point [3]. We can therefore
consider a noncompact U(1) gauge group at the critical
point. The simplest theory is [4]

Lz =

2∑
a=1

|(∂µ− iaµ)za|2 +V (z†a, za) +κ(εµνκ∂νaκ)2 (3)

FIG. 3: The four distinct configurations of the VBS state,
corresponding to the four values of the order parameter ψV BS .
The ovals represent singlet states. Figure borrowed from [1]

where V (z†a, za) = s|z|2 + u|z|4 is a potential with con-
stants s and u determined by the coupling strengths of
the original theory(1). Since monopoles are irrelevant at
the critical point, the topological number Q is conserved.
The critical point also has spin 1/2 excitations with mass
s that do not appear in the Néel phase. We will see that
the same critical theory is obtained by attacking the crit-
ical point from the VBS phase.

VBS PHASE

The valence bond solid (VBS) phase is a paramagnetic
phase in which pairs of spins form singlets (see Figure
3). This phase preserves the spin SU(2) symmetry but
breaks translational symmetry. The valence bond phase
is characterized by a Z4 order parameter ψV BS = eiχ,
χ = 0, π/4, π/2, 3π/4, corresponding to the four possible
orientations and positions of the singlet pairs. Unlike
the Néel phase, VBS phase has gapped spin 1 “triplon”
quasiparticle excitations [2].

Topological defects in this phase are domain walls, sep-
arating regions with different values of the VBS angle χ
[1]. By intersecting domain walls at a site on the lattice,
a Z4 “vortex” can be constructed. Shifting the vortex
by a single site reverses the direction of the vortex. An
unpaired spin occupies the center of the vortex, where
the domain walls meet (see Figure 4). We will see that
this lone spin corresponds to the spinor z introduced in
the last section. As we move away from the VBS ordered
phase towards the critical point, the domain walls of the
vortices thicken, with thickness ξV BS . Within the do-
main walls, on the scale of ξ, the correlation length of
the spins, the Z4 anisotropy breaks down and χ varies
smoothly. At the critical point, χ describes the phase of
an XY model, which has local U(1) symmetry. It can
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FIG. 4: Z4 vortex formed by domain walls (blue), with an
unpaired spin in the center. Figure borrowed from [1]

FIG. 5: RG flow of the system, where g is the strength of
interactions in (1) and λ4 is the monopole fugacity. Figure
borrowed from [5]

be shown that the vortices with unpaired spins z couple
to the gauge field of this U(1) symmetry, yielding exactly
the same theory near the critical point that was obtained
starting from the Néel phase (3). The conserved quantity
J0 = K∂0χ = 1

2π ε
ij∂iaj is the magnetic flux density of

the emergent gauge field. This means that the operator
ψV BS = eiχ increases the magnetic flux by 2π. Thus the
VBS order parameter describes the creation of monopoles
in the Néel phase [1].

RENORMALIZATION GROUP FLOW

The renormalization group flows for the antiferromag-
netic lattice model are shown above. Here, g is the
strength of long range interactions in (1) and λ4 is the
monopole fugacity. As g → 0, the monopoles vanish
(〈ψV BS〉 = 0) and the vortices z of the VBS phase
condense (〈n̂〉 6= 0). As g → ∞, the monopoles con-
dense (〈ψV BS〉 6= 0) and the vortices become confined
(〈n̂〉 = 0). The U(1) spin liquid phase appears at large g,

but is unstable to monopole creation events. The decon-
fined critical point at g = gc possesses properties not seen
in either the Néel or VBS phase: The conservation of an
integer topological number Q (2), given by the magnetic
flux of the emergent U(1) gauge field, and fractional ex-
citations z. Interestingly, these two degrees of freedom
connect the two phases in a nonlocal, topological way: Q
counts the number of skyrmions in the Néel phase, and
z corresponds to vortices in the VBS phase.
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APPENDIX

To obtain the theory at the critical point in a dual vor-
tex description, we note that as we approach the critical
point, the domain walls thicken and the Z4 symmetry ap-
proaches a U(1) symmetry. Since the vortices are mass-
less in this limit, the XY Lagrangian in the continuum
limit is

LXY =
1

2
κ(∂χ)2 (4)

where φ is the vortex phase angle (VBS orientation),
which changes by 2π going around a vortex, and κ is
a constant.Clearly Jµ = K(∂µχ) is the conserved cur-
rent, with ∂µJ

µ = 0. In 2+1 dimensions, this means we
can write Jµ in terms of a U(1) gauge field aµ:

Jµ =
1

2π
εµνλ∂νaλ (5)

Indeed, Jµ is invariant under the gauge transformation
aλ → aλ+∂λΛ. Plugging in (5) into LXY and integrating
by parts [6],

LXY =
1

4π
aλε

λµν∂µ∂νχ (6)

Since the phase field χ is not defined globally, ελµν∂µ∂νχ
does not vanish. Integrating the component coupled to
a0 in a region of space containing the vortex,∫

d2xεij∂i∂jχ =

∮
~dx · ~∇χ = 2π (7)

This shows that ελij∂i∂jχ is the density of vortices, and
the vortex current is

jµ = ελµν∂µ∂νχ (8)

Plugging in (5) for κ∂nuχ,

jµ =
1

4π2κ
εµνλ∂νbλ (9)
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where bλ = ελαβ∂αaβ is the field strength. Including
terms za, z

†
a which create and annihilate vortices, the crit-

ical theory is [1]

Lz =

2∑
a=1

|(∂µ − iaµ)za|2 + V (z†a, za) + κ(εµνκ∂νaκ)2
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