
Casimir forces between gently curved surfaces

David Leon1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093

A brief look at the Casimir force, from a simplified toy model to a path integral approach incor-
porating small deviations from flatness.

INTRODUCTION

One of the consequences of our quantum mechanical
world is that the vacuum is not really empty. Fluctua-
tions of quantum fields contribute to a nonzero vacuum
energy, and while we can safely ignore this divergent en-
ergy in most calculations since we only care about relative
energy scales, we can agree that changes in this vacuum
energy should certainly be observable.

Consider for example two parallel conducting plates.
We know that conductors have no internal electric field
which imposes the condition that the modes between the
two plates must vanish at the boundaries. Since the en-
ergy of these modes is dependent on the plate separa-
tion, the vacuum energy will change with separation and
where we have a spatially varying energy there is a force
proportional to its gradient.

This force has been experimentally verified at small
separations and simple conductor geometries but it is dif-
ficult to derive an expression for the force between more
complicated curved surfaces. We will first get acquainted
with the Casimir force in a simple case of perfectly flat
plates and then attempt to understand the case for gently
varying conductor surfaces in the path integral formula-
tion.

A SIMPLIFIED MODEL

As is the case for most instructive examples we can
make a number of simplifying assumptions to calculate
the Casimir force between two plates. First, rather than
dealing with the technical complications of the electro-
magnetic field let us simply use a real scalar field. As
stated before, we will assume the plates are flat and per-
fect conductors. Finally, let us restrict the problem to
one spatial dimension for simplicity.

One further note: let us consider three parallel plates
where the two outer plates are stationary and we vary
the position of the innermost plate. This will allow us
to account for the change in the modes on either side of
the moving plate. To find the force between two plates,
we will take the separation between plates 1 and 2 to be
much smaller than the distance between plates 2 and 3.

Now recall that the ground state energy of a free scalar

field is given by:
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For our parallel plate setup, the contributions from be-
tween two plates only allows discrete energy values giving
an energy per unit area of
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With frequency ωn = nπ/d for a plate separation d. Of
course this sum is still divergent as it includes arbitrarily
high energies so let’s regularize the sum with an ultravio-
let cutoff a−1 so that the energy is finite and in the limit
a− > 0 we can recover the cutoff independent result.
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Since we have a large cutoff, a is small and we can expand
the exponentials as 1 + aπ/d to arrive at:
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Now in our setup we have three plates, two outer plates
are fixed at some very large separation L while the inner
plate is some small distance d from one of the plates (and
a distance L−d from the other). The contribution to the
energy from these two plate separations is:

E(d) + E(L− d) =

(
d

2πa2
− π

24d

)
+

(
L− d
2πa2

− π

24(L− d)

)
=

L

2πa2
− π

24d
− π

24(L− d)

We notice that the term containing the cutoff dependence
is a constant so when we find the force from a variation
of d we arrive at a cutoff independent term:

F =
∂(E(d) + E(L− d))
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Which in the limit d << L results in:
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So we arrive at the fact that from the divergent vacuum
energy we’ve ignored for so long in our study of quantum
fields yields a finite measurable force.

To make the connection to three spatial dimensions,
if we perform the calculation in D spatial dimensions it
can be shown that the d-dependent part of the vacuum
energy is proportional to d−(D) so that the Casimir force
scales as F ∝ d−(D+1)

In the spirit of Ph 215c we can also make the obser-
vation that in this case we obtain a cutoff independent
result where in reality conducting plates have a natu-
ral frequency cutoff due to their finite conductivites, so
arriving at a cutoff independent result is in some ways
deceiving.

Now that we’ve gone through a simple (and hopefully
intuitive) approach let us move on to a path integral
approach and see if we can move beyond perfectly flat
plates.

PATH INTEGRAL APPROACH

Again for simplicity let us consider the a scalar field.
In order to incorporate our two conducting plates into

the path integral we can insert delta functions of the
scalar field along the planes of our conducting plates. So
for example in three spatial dimensions with two plates
we can define z1 = z1(x1, y1) and z2 = z2(x2, y2) as the
profiles of our two conducting plates which can have small
deviations from complete flatness. Upon integrating over
φ the delta functions will impose the condition that the
field vanishes at the plates. The Euclidean path integral
will be:

Z =

∫
[Dφ]δ1(φ)δ2(φ)e−S0[φ]

Where the delta functions can be expanded in terms of
an auxiliary field λ:

δi(φ) =

∫
[Dλ]e−i

∫
d4xφ(x)λ(x‖)δ(z−zi(x‖))

The x‖ denotes that the auxiliary field is only defined on
the surface corresponding to the plates. Essentially this
is the familiar procedure of adding a source term for φ,
so we can now integrate out φ and arrive at an integral
that is quadratic in the source term:
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The indices a, b run from 1 to 2, corresponding to the
two conducting plates, and the field is defined across the
surface of these plates (λ1 along z1 and λ2 along z2). As
this is quadratic in λ we know the result will be (up to
some normalization) a functional determinant of G which
gives us:

Γ = − log(Z) = − log(Det(G)−1/2) =
1
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So we have a nice result in terms of the scalar propa-
gator and the surfaces of the conducting plates. The
procedure at this point is to first note that we are still
modeling plates that are close and approximately flat, so
we can separate the surface profiles into an average value
and a small deviation z = d+ η(x‖) which allows for an
expansion of Γ in powers of η. This condition allows us
to find the leading order correction to the Casimir en-
ergy of order η2 so that the energy between two approxi-
mately parallel plates with small deviations according to
z = d+ η(x‖) is roughly of the form:

E(d, η) = U(d) +

∫
d̄2kG(d, k)|η(k)|2

Where U is the result from using flat plates. Expand-
ing G at low energy gives a k2 term for the final result
that the leading order correction to the Casimir energy
is proportional to |∇η|2.
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