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The entanglement entropy is a useful measure of the “degree” of entanglement in a quantum
system. Certain systems can effectively be described by a corresponding QFT; in the case of a
1-dimensional system near a phase transition, the entropy can be calculated using a relativistic,
massless CFT in 1+1 spacetime dimensions.

INTRODUCTION

Measuring the “amount” of entanglement in a system
is a matter of theoretical interest [1], but seems loosely
defined on its own. One metric of the entanglement is
something called the entanglement entropy; as we’ll see,
this is a good metric to study, because in certain cases
(namely, when the theory is reducible to a conformal field
theory, or CFT), this is an exactly calculable quantity.
Since we could easily be talking about systems which
aren’t in the realm of QFT, for example a chain of spins,
you might ask why I’m bothering to mention field theory
at all. It turns out to be useful for such systems near
critical points in their phase diagrams, in which case cor-
relation lengths grow much larger than any microscopic
“graininess” like a lattice spacing.

I’ll start by defining the entanglement entropy, then
talk about CFT a little bit before moving on to a spe-
cific example due to [4], in which case it is clear how
the machinery of CFT is applicable and powerful in the
computation of the entropy.

ENTANGLEMENT ENTROPY

Imagine subdividing a quantum system into several
parts [1]; for now, let’s say two, called A and B. Also
imagine that the system A ∪ B is a pure quantum state
|Ψ〉, so that we can define the density matrix ρ = |Ψ〉〈Ψ|.
We can define the reduced density matrix for either sub-
system by tracing out the degrees of freedom of its com-
plement à la

ρA = Tr Bρ (1)

and vice versa for ρB . The entanglement entropy is de-
fined for subsystem A, for example, in an identical man-
ner to the von Neumann entropy as SA = −Tr ρA log ρA.
To (heavily) paraphrase Holzhey, et. al. [4], this entropy
describes correlations between A and A ∪B by counting
the number of states in B consistent with measurements
restricted to A, given a priori knowledge that A ∪B is a
pure state.

Let’s think about a specific system [1]; namely, a set

of local commuting observables {φ̂(xi)} living on a one-
dimensional lattice with sites labeled by the xi, with lat-
tice spacing a. The domain of x has length L, which may

be finite or (semi-)infinite. At finite inverse temperature
β, the density matrix is defined by

ρij =
1

Z(β)
〈{φi(xi)}|e−βĤ |{φj(xj)}〉. (2)

Z(β) is the partition function, defined in the usual way

as Z(β) ≡ Tr e−βĤ . Here, the trace becomes a path
integral over the collection of φ’s; explicitly

ρ =
1

Z

∫
[dφ(x, τ)]

∏
x

δ(φ(x, 0)− φi(xi))

×
∏
x

δ(φ(x, β)− φj(xj))e−
∫ β
0
dτLE . (3)

If we want Z(β), it’s just the numerator of (2) but with
the identification φi(x) = φj(x); in the path integral this
has the effect of “stitching” together the integration sur-
face at τ = 0 and τ = β, so it now looks like a tube with
circumference β.

At some point we want to take a subset of our
domain, which might be a collection of intervals
(u1, v1) . . . (uN , vN ); call it A. To calculate the reduced
density matrix ρA, we should only stitch the edges of the
integration surface in (3) at values of x which are not
contained in A. This leaves open cuts on our tube. If we
join together n copies of this tube (bear with me, there
is a goal in mind) at the cuts, i.e. in such a way that we
identify φki (x) = φk+1

j (x) for all x ∈ A, where 1 ≤ k ≤ n
i.e. k labels the tube, this is like taking the trace of n
powers of ρ, i.e. Tr ρnA. The figure below is a really nice
pictorial representation of this surface, courtesy of [2].

Furthermore, it is true that Tr ρA =
∑
λ λ where the

λ’s are the eigenvalues of ρA, and λ ∈ [0, 1) since it’s
a density matrix; this means Tr ρnA =

∑
λ λ

n converges
and is thus an analytic function for n > 1. In addition,
using the usual rule for derivatives of an exponential, we
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find that

SA = −Tr ρA log ρA = − lim
n→1+

∂

∂n
Tr ρnA (4)

which is well-defined because of the analyticity of Tr ρnA.
Finally, if we define the partition function on the n-sheet
(comprised of the n stitched-up tubes) to be Zn(A), then
we arrive at the result

Tr ρnA =
Zn(A)

Zn
(5)

⇒SA = − lim
n→1+

∂

∂n

Zn(A)

Zn
(6)

where the first equality holds by definition. This is a
nice result, because it lets us calculate SA without ever
having to calculate a density matrix (which, in general,
may be very difficult or impossible to compute).

We can make this look like quantum field theory by
taking the limit a → 0. As we’ll see, this leads to terms
in S which are proportional to log a. This looks like a
problem, but in fact this dependence on a can be shown
to drop out of the final expression. In the section af-
ter next, we’ll focus on a relativistic and massless 1+1
dimension field theory, which is writable as a so-called
conformal field theory, or CFT.

WHAT IS A CFT?

Before moving on, it’s worth noting what a CFT ac-
tually is. A CFT exhibits conformal symmetry in the
sense that the action of the theory is invariant under con-
formal transformations. The conformal group includes
the translation, rotation, and dilatation (scaling) trans-
formations (remember that a Lorentz transformation is
like a rotation after we analytically continue to Euclidean
time!). As you may have learned long ago, these are the
transformations which preserve angle measures between
intersecting lines.

As an example [3], consider the two-point function for a
scalar field, 〈φ(x)φ(y)〉. If the theory exhibits conformal
symmetry, then under a scaling of the coordinates x →
λx, the two-point function should change at most up to
a scale factor:

〈φ(x)φ(y)〉 = λ2∆ 〈φ(λx)φ(λy)〉 (7)

where ∆ is the scaling dimension for φ. In fact, conformal
symmetry imposes translational and rotational ivariance
as well, so that two-point functions must be of the form

〈φ(x)φ(y)〉 = |x− y|−2∆
(8)

(up to the normalization of φ).
Consider [5] a coordinate transformation of the form

xµ → xµ + εµ(x). It turns out that if this is a confor-
mal transformation, εµ(x) is restricted by the following

conditions:

[gµν� + (d− 2)∂µ∂ν ] ∂ · ε = 0 (9)

where d is the number of dimensions (these conditions
holds specifically if we take the flat-space case gµν = δµν).
Is d = 2 somehow special? Answer: yes, it is! Eqs. (9)
reveal themselves to be the Cauchy-Riemann equations.
The conformal transformations in d = 2, therefore, can
be written as holomorphic functions on z and z̄, under the
substitutions z = x1 + ix2 and z̄ = x1 − ix2. Soon, we’ll
use z and z̄ with the Euclidean space-time coordinates;
it turns out this is a useful construct.

AN EXAMPLE: RELATIVISTIC, MASSLESS
1+1-DIM THEORY

This example is originally due to [4], however this dis-
cussion follows [1] which is much clearer and is largely a
“redo” of the original treatment. More specifically than
the section title would imply, this is a case in which the
system in question is restricted to a single interval on the
lattice with length `. Before we jump into this specific
example, however, we should discuss the nature of the
stress tensor in CFT.

After analytic continuation [5] from Euclidean space-
time to z, z̄, we can write the stress tensor as a function
of these complex variables. Additionally, we can expand
the insertion of T at two points z and w, the form of
which is general and what is term-by-term allowed by
conformal symmetry:

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
, (10)

which is the operator product expansion (OPE) for
T (z)T (w). The first term is called the conformal
anomaly, characterized by the central charge c. This
term is anomalous because, classically, the expectation
value of T should vanish. In fact, c = 0 classicaly, so the
first term is purely a quantum effect.

The central charge is actually a pretty remarkable
thing. One way to think about [3] it is that it’s related to
a “soft” conformal symmetry breaking which arises from
the introduction of a macroscopic scale into the system,
which could be a boundary condition, for example. Even
more interestingly, c lumps theories together into large
universality classes; for example, c = 1 for the free bo-
son, c = 1/2 for the free fermion, etc. In some sense,
it’s an extensive measure of the degrees of freedom in the
system. We’ll see how this manifests in the calculation
of the entanglement entropy.

Eq. (10) can be written in terms of the generator of
the transformation w → z, then integrated to give the
transformation of T in the form

T (z)→ T (w) =

(
dz

dw

)2

T (z) +
c

12
S[z;w] (11)
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where S[z;w] is the Schwartzian derivative,

S[z;w] =
(∂wz)(∂

3
wz)− 3

2 (∂2
wz)

2

(∂wz)2
(12)

where you should remember that z = z(w).
We want to know about the stress tensor in the first

place because (5) is just the vacuum expectation value
〈0|0〉Rn on the stitched-up Riemann n-surface; but this
is just 〈T (w)〉Rn . We can do even better by finding a
transformation that sends us to some z in which we know
the expectation value of T (z) to be zero, eliminating it
from the expectation value of (11)! Namely, we can send
the Riemann n-sheet to the plane C, in which case we
know 〈T (z)〉C = 0 by rotational invariance. The mapping
that does the trick [1] is

w → z =

(
w − u
w − v

)1/n

(13)

where u and v are the branch points on the Riemann sur-
face at the edges of the interval in consideration (under
z they get sent to 0 and ∞, respectively).

Using the conformal Ward identities, one can also
calculate a correlator like 〈T (w)φn(u)φ−n(v)〉C, where
φ±n are two operators with the same (complex) scal-
ing dimension ∆n = ∆̄n, and are normalized so that
〈φn(u)φ−n(v)〉C = |v − u|−4∆n , with

∆n =
c

24

[
1−

(
1

n

)2
]
. (14)

The details of the intervening calculation is not as im-
portant as the result, which is that

Zn(A)

Zn
= 〈T (w)〉Rn =

〈T (w)φn(u)φ−n(v)〉C
〈φn(u)φ−n(v)〉C

. (15)

This is good, because as it turns out, the RHS is actually
an expression that is totally in terms of w, the branch
points u, v and the scaling dimension ∆n! This gives us
the LHS of (15) up to a constant cn:

Tr ρnA = cn

(
v − u
a

)−(c/6)(n−1/n)

(16)

where a has been inserted for dimensional reasons. The
cn’s aren’t determined, but for n = 1 this constant should
be 1 (since ρA is normalized). The result, after using the
derivative trick, is that

SA =
c

3
log

`

a
+ c′1 (17)

where c′1 is some constant which is not universal (unlike
the central charge!). Notice that a length scale has been
introduced into the expression. As we take a → 0, we
might think of this as taking the lattice spacing to zero.
The expression diverges logartihmically; in a crude sense,
it’s like we’re trying to add up an infinite number of de-
grees of freedom. This issue can be eliminated in some
cases with the proper choice of renormalization factor [4].
In fact, this amounts to redefining the entropy with re-
spect to the ground state, since differences in entropies
are much more well-behaved. In this case, even c′1 will
disappear.

We can redo the previous calculation, but at a finite
inverse temperature β, and obtain instead the result

SA(β) ∼ c

3
log

[
β

πa
sinh

π`

β

]
+ c′1 (18)

in which case we recover the previous result in the low-
temperature limit ` � β. In the high-temperature limit
` � β, the entropy goes to ∼ (πc/3)(`/β), which is an
extensive quantity, comfortingly in agreement with our
classical expectations! We have thus recovered a result
which, in some sense, is a connection between the classi-
cal and quantum regimes.
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