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A symmetry not present in the Hamiltonian of a 2-D lattice spin system can emerge at low
energies.

INTRODUCTION

Following [1], we will study a model consisting of a
lattice of spins, taking it to the low energy limit in two
steps. In the first, intermediate step, we will see that a
lattice gauge theory emerges; in the second step, which
takes us to the ground states, we will encounter anyons,
particles which change phase when moving around one
another.

THE MODEL

We start with a lattice on a torus with spins lying on
the edges (figure 1), with the Hamiltonian

H = −a
∑
s

As − b
∑
p

Bp (1)

where

As ≡
∏

j∈star(s)

σx
j Bp ≡

∏
j∈boundary(p)

σz
j (2)

and a and b are constants.

FIG. 1: Lattice with spins lying on the edges. (Taken from
[1].)

star(s) and boundary(p) are shown in figure 1. Each of
the operators As and Bp is a product of four spin opera-
tors at different locations. Since any given plaquette can
have either zero or two (i.e. an even number of) edges in
common with any star and vice versa, al the terms in the
Hamiltonian (As and Bp for all s and p) commute with
each other, and thus can be simultaneously diagonalized.

EMERGENCE OF LATTICE GAUGE THEORY

Let us assume that a is much larger than b. At high en-
ergies, any configuration of spins is possible. The Hilbert
space consists of all the combinations of spin states at
each edge.

At somewhat low energies – low compared to the co-
efficient a but still high enough to allow excitations of
order b – only states that minimize the first term of the
Hamiltonian survive; i.e. the Hilbert space becomes:

H =

{
|ψ〉 : As|ψ〉 = |ψ〉 for all s

}
. (3)

This Hilbert space is not local, in that it is not a tensor
product of local Hilbert spaces.

The Hamiltonian, then, reduces to

H = −an+ b
∑
p

Bp (4)

where n is the number of lattice sites s.
If we imagine an initial configuration in which all spins

are ’down’ in the x-direction, states |ψ〉 satisfying the
condition As|ψ〉 = |ψ〉 are closed strings of ’up’ spins. It
has to be closed, because if it has endpoints, As|ψ〉 =
−|ψ〉 at those points. You can see in figure 2 that for
each vertex s on the closed string, star(s) contains an
even number of up spins and down spins (two of each), so
that As = 1, whereas at the endpoints of the open string,
the ’star’ of those points contain only one up spin.

Since σz flips the spins in the x-direction, the operation
Bp amounts to flipping the spins around the plaquette p.
As can be seen from figure 3, the result of such an oper-
ation on a closed string results in a closed string; we are
still in the same Hilbert space, and the dominant (first)
term of the Hamiltonian remains at its minimum. Hence
a Z2 gauge symmetry emerges [2]. This is a local sym-
metry since we can operate with Bp at select locations.
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FIG. 2: An open string (upper left) and a closed string (right).
Bold lines are ’up’ spins.

FIG. 3: Operating with Bp leaves the energy unchanged.
(Taken from [1].)

ABSENCE OF MAGNETIZATION

This system can have no magnetization. We can see
this in the following way [2]:

〈ψ|σz
j |ψ〉 = 〈ψ|AsA

−1
s σz

jAsA
−1
s |ψ〉 = 〈ψ| − σz

j |ψ〉 (5)

for j ∈ star(s), since As|ψ〉 = |ψ〉 (we have used the
facts that σx and σz anti-commute and σx is its own
inverse). Hence

〈σz〉 = 0. (6)

THE GROUND STATES

As we go to even lower energies, states not satisfying
the second constraint, Bp|ψ〉 = |ψ〉 also get thrown away,
and only the true ground states remain. The Hilbert
space further reduces to:

FIG. 4: Closed loops around the torus. (Taken from [3].)

H =

{
|ξ〉 : As|ξ〉 = |ξ〉, Bp|ξ〉 = |ξ〉 for all s and p

}
(7)

Since σz flips the spins in the x-direction, satisfying
Bp|ψ〉 = |ψ〉 means the state |ψ〉 has to be invariant
under flipping. Hence the ground states are uniform su-
perposition of closed strings: the flipping operation will
deform some strings into other strings, but since the coef-
ficients of each string is the same the operation will result
in the same state. Schematically,

|ψ〉 =
1√
NC

∑
{C}

|C〉 (8)

where {C} runs over spin configurations which consist
of collections of close strings.

Since we are on the torus, there can be four kinds of
distinct closed loops: there are two ways in which the
strings can wrap around the torus (see figure 4), and the
number of up spins (in the z-direction) along those loops
can be even or odd (whether it is even or odd is conserved
with respect to the operations As and Bp). Hence there
is a four-fold degeneracy for the ground state.
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FIG. 5: Open strings with particles at the endpoints. (Taken
from [1].)

PARTICLES: ANYONS

Elementary excitations, against the backdrop of
ground states, occur when the smallest number of con-
straints are violated. If we have an open string, the end-
points, where the constraints are violated, can be called
particles. Just as electric field lines can end on elec-
trons, the flux lines can end on these particles. There
can be two types of particles, z-type particles which live
on the vertices, and x-type particles which live on the
plaquettes (see figure 5). These states are, respectively,
|ψz(t)〉 = Sz(t)|ξ〉 and |ψx(t′)〉 = Sx(t′)|ξ〉, where

Sz(t) =
∏
j∈t

σz
j Sx(t′) =

∏
j∈t′

σx
j (9)

with t being a string of edges, and t′ a set of edges that
the string t′ intersects.

Let us consider what happens when we move one par-
ticle around another. Let the initial configuration con-
sist of two x-type particles and two z-type particles
whose strings (q and t respectively) do not intersect:
|Ψinitial〉 = Sz(t)Sx(q)|ξ〉. If we move an x-type parti-

cle around a z-type particle along a loop c (as in figure
6),

|Ψfinal〉 = Sx(c)Sz(t)Sx(q)|ξ〉 = −Sz(t)Sx(q)|ξ〉 = −|Ψinitial〉
(10)

where we have used the fact that Sx(c)Sz(t) =
−Sz(t)Sx(c) since c and t have one edge in common, and
that Sx(c)|ξ〉 = |ξ〉 since c is a closed string. We see that
the state acquires a factor of −1, or a phase of π. Such
particles which acquire a phase when moving around one
another are called anyons.

FIG. 6: Moving one particle around another. (Taken from
[1].)
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