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I discuss a specific implementation of entanglement renormalization which preserves local sym-
metry which can be used in conjuction with MERA to obtain ground states of entangled systems.

INTRODUCTION

This term paper is a brief introduction to the idea of
entanglement renormalization and the multi-scale entan-
glement ansatz (MERA). I discuss a new proposal by
Tagliacozzo and Vidal to carry out a particular MERA
which preserves local symmetries. Throughout, I will as-
sume a moderate level of familiarity with Kitaev’s toric
code model[3] and the basics of lattice gauge theory.

Entanglement Renormalization (ER) is a real space
RG method which renormalizes the entanglement of the
lattice[4]. This is useful because highly entangled systems
are very computationally costly to simulate, whereas less
entangled systems are easier. In practice, this is carried
out by unitary transformations called disentanglers. In
an attempt to avoid technical details, these may sim-
ply be thought of as black boxes which reduce the en-
tanglement between a block of spins and its neighbors.
During ER, disentanglers u are combined with isometries
w, which map multiple spins into a single effective spin,
to coarse grain an entangled lattice system. An impor-
tant property of these operators is that if they are sym-
metric under a particular symmetry, the state obtained
by acting with these operators will retain the symmetry.
One step of coarse graining is denoted by an operator
W : L → L′.

By repeated application of W , a lattice may be coarse
grained to a small lattice denoted Ltop with an effec-
tive Hamiltonian Htop which can be diagonalized to find∣∣Ψtop

GS

〉
. On the other hand, if the particular forms of

W1,W2,W3, . . . are known, the coarse graining may be re-
versed and the original ground state |ΨGS〉 may be recov-
ered. The essence of MERA is to use the set of W1,W2, ...
as a variational approach to solve for the ground state by
manipulating the coefficients of the set of u and w to min-
imize the energy 〈Ψ |H |Ψ〉. Having provided a lightning
speed review of ER and MERA, we now move on to the
specifics of the proposal in [1]. The goal is to coarse grain
the toric code model.

THE STRATEGY

The key idea in [1] is that if the original Hamiltonian
has symmetry, be it global or local, this should be in-
corporated into the ER procedure for two reasons. One,
it is naturally desirable that upon coarse graining, our
new model retains the symmetries present in the original

model. It turns out that this condition may not be satis-
fied if we do not explicitly enforce it. Another reason is
that exploiting symmetry allows for significant reduction
in computational time due to the nature of symmetric
matrices.

First we consider a system with a global symmetry
R. We desire two properties of the operator W ; first,
it should map local operators in L to local operators in
L′. Furthermore, it should preserve the symmetry or, in
other words, the coarse graining transformation should
commute with the symmetry operation, up to some sub-
tlety about how the symmetry operation acts on sites in
L′.

Now for the main content of the paper, we consider the
presence of a gauge symmetry. Two possible approaches
to coarse graining such a model are to a) ignore the sym-
metry and just coarse grain away or b) use the duality
between lattice gauge models and spin systems to per-
form the coarse graining in the spin system, then trans-
late back. However both of these approaches are not ideal
for various reasons.

Therefore, the approach we take is as follows. We
introduce a specific coarse graining implementation W
which exactly preserves the local Z2 symmetry of the
toric code. This transformation W is composed of two
parts, an exact transformation Wexact and a numerical
process Wnum. To describe the effect of these transfor-
mations, I need to introduce some terminology. A spin
is constrained if it is part of some star operator (in the
TC Hamiltonian), and free if no star operator acts on
it. Then, Wexact is a transformation which acts on con-
strained spins, and Wnum acts on free spins. The gauge
symmetry is manifested in the constrained spins, so by
acting on them only with an exact transformation, we
preserve the symmetry. The combination of preservation
of locality and preservation of local symmetry is what
distinguishes this approach from others.

In fact, the action of Wexact is to free the constrained
spins. This is done through the application of CNOT
gates, which are a well known operation from quantum
information. Understanding the action of CNOT gates
is more or less necessary to understand how this coarse
graining transformation works, yet I consider it to be
‘auxiliary’ knowledge and therefore relegate it to the ap-
pendix. I now describe the two intermediate processes of
the CG transformation.
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Wexact

Wexact is a systematic application of CNOT gates in-
tended to ‘free’ certain constrained spins. Its effect is that
of 8 initially constrained spins, 3 are freed, 3 are disentan-
gled (in fact removed, because they get projected out),
and 2 are left constrained. The constrained spins again
live on links of a larger square lattice, and so the proce-
dure may be iterated, with some subtlety. The transfor-
mation itself is shown diagramatically in Figure 2. We
have already seen (upon consulting the appendix) that
CNOT gates can be used to focus a star operator onto
a single quit, which must be in a pure state |+〉 and
subsequently gets projected out. Then we have leftover
constrained spins on the links of the plaquettes, and free
spins in the center of the plaquettes. In my experience,
the transformation is best understood by studying the
diagram. As a side note, Wexact may be interpreted as
locally applying the duality transformation from gauge
system to Ising model on individual plaquettes.

Wnum

Wnum takes the free spins created by Wexact and coarse
grains them into a single effective spin. This is intuitively
the same idea as in Kadanoff’s block spin RG in which
we separate the spin interactions into ‘fast’ and ‘slow’
terms and trace out the fast degrees of freedom at each
step. Wnum may be thought of as a map

w : (C2)⊗3 → Cχ (1)

where the RHS is the χ dimensional vector space of an
effective free spin. As alluded to before, this is the part
of the transformation which may muddle up the local
symmetry if we are not careful. This step introduces
some numerical errors, so it is important that it acts only
minimally on the constrained spins, which is where the
symmetry acts. Wnum is designed to commute with all
of the star operators which are leftover after Wexact, and
so it leaves the local symmetry intact. As promised, the
transformation W exactly preserved the local symmetry.

Effective Hamiltonian

During each of Wexact and Wnum, the Hamiltonian is
transformed into an effective hamiltonian given by H ′ =
W †HW . After the first step, four star operators acting
in L are transformed into a single star operator acting in
L′. Four plaquette operators are transformed into three
single site σz operators and a single seven-spin plaquette
operator. The magnetic field term acting on single sites
is transformed into a coupling interaction of the form

−hxσxσx between intra-plaquette spins and −hxσxσxσx
between inter plaquette spins (each of the pauli matrices
acts on a different spin). After the Wnum transformation,
the Hamiltonian acquires new terms which represent the
operation of σz and σx on the coarse grained free spin
given by

Σz ≡ w(σz1 + σz2 + σz3)w† (2)

Σx ≡ w(σx1σ
x
2 + σx1σ

x
3 + σx2 + σx3 )w† (3)

ITERATION OF W

There are some subtleties involved in iterating the pro-
cedure discussed above. When the first W is applied, the
lattice is composed entirely of constrained spins and is
absent of free spins. After W is applied, there appears a
free spin at the center of each plaquette, so we need to
slightly modify the subsequent coarse grainings. Origi-
nally, Wnum took 3 free spins and mapped them to one
effective spin, described by

(C2)⊗3 → Cχ (4)

Recall that every application of Wexact creates three new
free spins. The subsequent Wnum, therefore, takes two
types of free spins. This new map can be described as

(C2)⊗3 ⊗ (Cχ)⊗4 → Cχ′ (5)

All factors of W after the first are therefore taking old
coarse grained spins and newly free spins and creating
a new effective spin with yet a new vector space of di-
mensionality χ′, χ′′, χ′′′, etc. χ is called the refinement
parameter, and it determines the accuracy of the trans-
formation, since this part is an approximation after all.
Note that the lattice after applying W has the same pat-
tern as L so with this subtlety in mind, we may continue
to iterate the transformation.

ENDING POINT

After iterating W some number of times, we will even-
tually be left with a 2 by 2 lattice. This is the penulti-
mate step in the ER scheme. This 2 by 2 lattice will be
mapped onto a set of 3 spins which contain topological in-
formation about the state we started with (recall the toric
code has fourfold degenerate ground states which may
be classified into topological sectors). It can be shown
that the product of σx (σz) along the non-contractible
cuts (loops) are mapped onto σx (σz) measured on the
two free spins under repeated application of W. The final
factor of Wnum, denoted as W ∗num coarse grains the re-
maining free spins into a single free spin which lives in the
vector space Cχ∗ . The final 3 spin system will be com-
posed of all free spins; due to the boundary conditions
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the star operators act trivially on each spin. This com-
pletes the description of the coarse graining procedure;

we have reduced a vector space C⊗2L
2

to C2 ⊗C2 ⊗Cχ∗

FINAL REMARKS

In this paper, I described a specific coarse graining pro-
cedure. You may be wondering what is the point of doing
this. The answer is that the idea of MERA is to find a
ground state of the final lattice L∗ and undo all the ap-
plications of W in order to recover the ground state of
the original model. The variational parameters to be op-
timized are the coefficients of the isometric and disentan-
gling tensors, and there exist optimization processes by
which this may be performed. The approach described in
this paper compares favorably to a number of other simi-
larly minded approaches, and are generalizeable to more
complex models where those other approaches may be
invalid. Therefore, this approach may be worth consid-
eration by people who are working with tensor network
algorithms.
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FIGURES

Here I copy several figures from reference [1] which
illustrate the coarse graining procedure.

FIG. 1: This figure illustrates how three free spins are coarse
grained into a single spin which sits at the center of the pla-
quette

FIG. 2: This diagram illustrates the process Wexact. It con-
sists of applying CNOT gates in the proper manner to turn
three constrained spins into free ones. Three spins are left
constrained. Two spins become completely disentangled and
are forced to be eigenstates of σx, and are projected out.

FIG. 3: This figure shows the last step which takes us from a
two by two lattice to our final three spins

Appendix: Qubits, CNOTS, and the Toric Code

In this section I describe CNOT gates and show how
they may be used to accomplish the tasks involved in
this coarse graining procedure. First, a CNOT gate is a
unitary transformation which takes as its argument two
qubits: a control qubit and a target qubit. It acts in the
following way

http://link.aps.org/doi/10.1103/PhysRevB.83.115127
http://link.aps.org/doi/10.1103/PhysRevB.83.115127
http://www.sciencedirect.com/science/article/pii/S0003491602000180
http://www.sciencedirect.com/science/article/pii/S0003491602000180
http://link.aps.org/doi/10.1103/PhysRevLett.99.220405
http://link.aps.org/doi/10.1103/PhysRevLett.99.220405
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UCNOT = |0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗ σx (6)

= 1⊗ |+〉 〈+|+ σz ⊗ |−〉 〈−| (7)

From these definitions, one may establish that the op-
erations on the control and target qubit transform in the
following way when conjugated by a CNOT gate:

1⊗ σz ↔ σz ⊗ σz (8)

σz ⊗ 1↔ σz ⊗ 1 (9)

1⊗ σx ↔ 1⊗ σx (10)

σx ⊗ 1↔ σx ⊗ σx (11)

The important thing for us is how these CNOT gates
affect the plaquette and star operators which appear in
the toric code hamiltonian. We shall shall see how the
terms in the Hamiltonian change by looking at several
poorly drawn diagrams. First, we introduce a diagram-
matic way to write the toric code hamiltonian, which
basically consists of just drawing a lattice. It is implied
that there is a plaquette operator acting on every plaque-
tte, and a star operator acting at every junction. A part
of the regular toric code hamiltonian looks like Figure 4.

Now consider acting with a CNOT gate with control
and target qubits A and B, respectively. The CNOT gate
is indicated by an arrow drawn from control to target
(Fig 5). Which terms will be affected by this operation?
Clearly the joint plaquette of qubits A and B as well as
the joint vertex will change. The plaquette term has the
form

− JmσzAσzBσzCσzD (12)

FIG. 4: The toric code Hamiltonian can be represented di-
agramatically by drawing the lattice, with implied plaquette
(star) operators acting on every (plaquette) (vertex). I have
drawn the spins living on the links of the lattice as red dots.
The black dots are points where star operators act.

From (8) we see that the σzAσ
z
B interaction is

changed into a 1Aσ
z
B so this plaquette term becomes

−JmσzBσzCσzD. Similarly, consider the star operator act-
ing at the joint vertex of A and B, it has the form

− JeσxAσxBσxGσxH (13)

From (11), the σxAσ
x
B term changes to σxA1B , and so this

term becomes −JeσxAσxGσxH .

On the other hand, the BGEF plaquette term can be
thought of as 1Aσ

z
Bσ

z
Gσ

z
Eσ

z
F , and under conjugation by

CNOT the 1Aσ
z
B term becomes, σzAσ

z
B , so

PBGEF → σzAσ
z
Bσ

z
Gσ

z
Eσ

z
F (14)

We see that plaquette ABCD effectively shrinks and pla-
quette BGEF grows. In addition, the star operator act-
ing at the joint vertex of A and B no longer acts on
qubit B after CNOT conjugation. With some thought,
one can see that this transformation may be represented
by modifying diagram 4. I invite the reader to convince
themselves that Figure 6 represents the new interaction
terms which we have just derived. Therefore, we say that
the action of a CNOT is to reconnect the target qubit.
By repeated application of CNOT gates, it is possible
to focus plaquette or star operators to a single site. An
example is given in Figure 7.

FIG. 5: A CNOT gate is indicated by drawing an arrow from
control qubit to target qubit.
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FIG. 6: This diagram represents the transformed Hamiltonian after the action of the CNOT gate from A to B

FIG. 7: This diagram shows how it is possible to focus the action of a plaquette operator to a single site. The plaquette p is
effectively reduced to plaquette p’, which acts only on the site in the middle


