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Magnetic monopoles can effectively catalyze proton decay. In the context of SU(5) GUT, the
suppression of baryon-number-violating effects via inverse powers of the unification mass are removed
in the presence of magnetic monopoles. Callan (1982) shows how this phenomena is the result of
boundary conditions imposed on fermion fields at the monopole core. Ultimately, they require that
the monopole core ground state have indefinite baryon number.

GENERAL PICTURE

The problem can be analyzed in various ways, one sim-
ple way is in the contex of the nonlinear sigma model
which identifies topological charge with baryon number.
Solitons in this model are nucleon and delta baryons.
For simplicity, Callan and Witten focus on the up and
down quark combinatins only. In this context, the mag-
netic monopole creates a defect such that the topologi-
cal charge of the sigma field can unwind giving different
baryon number. The defect allows for coupling to lepton
field which comes in the form of a boundary condition on
the lepton field at the monopole core. At the end of the
day, the process is loosely described such that a Skyrme
soliton unwraps into a radial π0 field that can fall into
the monopole core and turn into a lepton. It should be
noted that above microscopic GUT scales, the magnetic
monopole structure is like that of the abelian Dirac mag-
netic monopole. The microscopic structure of the theory
comes in the form of boundary conditions on the relevant
sigma and lepton fields.

It has been shown that reactions in GUTs such as:

M + p→M + e+ + π0 (1)

are independent of the unification mass. The only other
relevant scale is the quark confinement scale so it is said
that this reaction should have a cross section with magni-
tude of that of a typical strong interaction. Such a result
in principle would allow for proton decay experiments as
a means to detect a flux of grand unification monopoles.

MAGNETIC MONOPOLE CORE AT r = 0

The work by both Callan and Witten is done in the
context of the standard SU(5) model. Callan (1982) fo-
cuses on only least massive generation of quarks and lep-
tons for simplification purposes, but the qualitative fea-
tures are unchanged when including higher mass quarks
and leptons.

There is a monopole core of radius equal to the inverse
unification mass. Within this length scale, the full SU(5)
symmetry is upheld, beyond this length scale only color
magnetic and ordinary magnetic fields survive such that
the unbroken symmetry group is SU(3)xU(1). The long

range fields are superpositions of the Dirac monopoles,
one for each charge. Color confinement causes the color
magnetic field from Yc to be screened.

The vector potential and field strength for the mag-
netic monopole is singular, i.e.

Aφ =
g(1 + cosθ)

rsinθ
(2)

Fθφ =
g

r2
(3)

Solving the Klein-Gordon equation for spin-zero parti-
cles in a monopole field requires that the wave function of
charged particles vanishes at the origin but neutral parti-
cles can have nonzero weight at the origin. To be neutral
the sigma fields have to commute with T3 i.e. the oper-
ator associated with the π0 pion field, where the sigma
field is written in terms of the pion field such that

U(~x) = exp(
2i

Fπ
~T · ~π) (4)

so the condition that it commutes with T3 is that U =
exp(iφT3) at the monopole location.

One can show that the net flux of baryon number inside
a sphere of radius r around the monopole is given as

JBr = φ̇
8π2r2 . So the time variation of the chiral field

at the monopole location tells us that baryon number is
disappearing into the monopole.

BARYON NUMBER VIOLATING EFFECTS

The quarks and leptons have ordinary charge and color
hypercharge where the total charge is Q̄ = Q + Yc. The
SU(5) fermions have Q̄ eigenvalues such that:

Q̄ = 1 : e+d̄3u1u2 (5)

Q̄ = 0 : d1d2u3d̄1d̄2ū3 (6)

Q̄ = −1 : e−d3ū1ū2 (7)

For Q̄ = 0, fermions do not interact with the monopole.
From the Dirac equation for a monopole field, the wave
function vanishes at the origin except for the lowest an-
gular momentum partial wave given by J = |eg| − 1
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where in our case eg = Q̄g = ± 1
2 is the charge-monopole

strength so J = 0. So J 6= 0 partial waves decouple
from the SU(5) physics. Since there is no repulsive or
centrifugal barrier, the entire incoming flux must pass
through the origin. If the particle is charged, the electro-
magnetic field angular momentum is egr̂ where r̂ points
from the monopole to the charge. By angular momen-
tum conservation we can see that as the monopole charge
passes through the monopole, it must change sign so that
egr̂ because r̂ flips sign. This is possible because the
monopole core contains fields that can cause transitions
between the types of charges contained in the fermion
multiplets. The fermions pair up in the following man-
ner: (e+, d3), (d̄3, e

−), (u1, ū2), (u2, ū1) such that the
first(second) component corresponds solely to an incom-
ing(outgoing) wave. When fermions interact with the
core, the net change in charge must be equal to that de-
posted onto the monopole. The net effect couples Q̄ = +1
with Q̄ = −1 fields. This also amounts to SU(5) effects
coupling to low-energy fermion physics as the coupling is
due to the SU(5) structure of the monopole.

Since only the J = 0 degrees of freedom are relevant,
we may now simplify the problem and focus only on this
partial wave. The field variable then only depends on one
variable, the radial distance from the core. In such a case,
a bosonization method is useful to convert the fermion
theory into the dual boson theory as is done for leptons
in the nonlinear sigma model apprach to this problem.

A pair of Weyl fields have a corresponding scalar de-
sciption defined on 0 < r <∞ given by:

(e+, e−)→ Φe+

(u1, ū1)→ Φu1

(d3, d̄3)→ Φd̄3
(u2, ū2)→ Φu2

where the boundary conditions evaluated at r = 0

Φe+ = Φd̄3 (8)

Φ′e+ = −Φ′d̄3 (9)

Φu1
= Φu2

(10)

Φ′u1
= −Φ′u2

(11)

(12)

The value Φi(r)√
π

is the net number of i-particles con-

tained in a sphere of radius r and thus Φi(0)√
π

represents

the net number of i-particles sitting on the monopole
core.

The quarks and leptons appear as solitons in the scalar
theory. The form of the soliton is such that the value of
Φi takes a step from one minimum to a neighboring min-
imum of Φi, where the minima are such that Φi = n

√
π.

For particles far from the monopole core, the Lagrangian
is a sum of sine-Gordon lagrangians for each fermion type
and the shape of the transition between minima are de-
termined from the minimizing the energy.

Minimizing the energy and making sure to satisfy the
boundary conditions gives the following ground state of
the system:

Φu1
= Φu2

= N
√
π (13)

Φe+ = Φd̄3 = −N
√
π (14)

and since N is any integer, there are an infinite num-
ber of degenerate ground states. Physically, Nth vacuum
state corresponds to having N baryons and N leptons
at the monopole core, that is, they have N times the
combination of (e−u1u2d3). Since these are all vacuum
states with the same minimum energy, transitions be-
tween these states cost no energy. So, transitions from
the N to N±1 state cause a change in lepton and baryon
number by 1. The monopole ground state will be a su-
perposition of the N-vacuum states and thus a state of
indefinite baryon and lepton number which is what allows
the baryon-number-violating reactions.

THE MUNCHING PROCESS

We can appreciate this in the context of the nonlinear
sigma model. For a given configuration of the chiral fields
U(~x) = eif(r)T3 with the boundary conditions U(∞) = 1
so f(∞) = 2π, one can obtain the current baryon and lep-

ton currents as JB0 = JQ0 = f ′(r)
8π2r2 which we can integrate

to give B = Q = f(∞)−f(0)
2π , so the configuration has both

charge and baryon number even though the topological
properties are not apparent. This is interesting because
when one starts with the nonlinear sigma model, baryon
number is at first identified with a topological charge.

Witten and Callan explain how such a configuration
can be smoothly reached from a Skyrme soliton coming
from infinity, wrapping around the monopole in the form
of a radial kink without changing the value of U at the
monopole. So in the case where f(0) = 0 and f(∞) = 2π,
this configuration corresponds to an eventual binding of
a proton to the monopole.

In the case where U(0) is allowed to vary in time.
In such a case, one may use the sudden approxima-
tion method to the scattering process which amounts
to an incoming soliton followed by an outgoing soliton
and positron. The outgoing soliton actually has baryon
number zero due to the Dirac string drilling. Dirac
drilling comes from the Dirac string inducing the con-
dition U(r, θ = 0, φ) = exp(iφ 1

2T3)U(r, 0, 0)exp(iφ 1
2T3)

where upon applying a singular gauge transformation, U
becomes continuous. In the process just described, apply-
ing the gauge transformation forces the baryon number
to zero.
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So if U(0) is fixed in time, the process amounts to
binding of a proton and if U(0) is allowed to fluctuate in
time, the monopole is allowed to munch on the baryon
number and spits out unwanted positrons and pions.

IMPLICATIONS ON MONOPOLE DENSITIES

Some interesting comments can be made regarding the
effective monopole density in the Universe. Through a
thermalization process, the monopoles can act to de-
stroy any net baryon number. Any baryon excess pro-
duced CP-violating events would be subjected to random
baryon number violating effects and would thus destroy
baryon excess. Rates would decrease as Universal tem-

perature decreased but it turns out that the monopole
interactions would not decrease fast enough compared
to other CP-violations interactions. This sets an upper
limit on the density of monopoles that would be consis-
tent with astrophysical evidence.
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