Parafermions

 $Conrad Foo^1$

¹Department of Physics, University of California at San Diego, La Jolla, CA 92093

The parafermion operators are a generalization of the free fermion operators used to solve the transverse field Ising spin chain. We will use the parafermion formalism to show that the Z_n spin chain Hamiltonian can be written in terms of free parafermion modes. Furthermore, we will show that parafermion edge zero modes exist when nearest-neighbour interactions are chiral.

INTRODUCTION

In the Ising model, each site on the lattice has only 2 possible states, and the Hamiltonian is constructed from Pauli matrices. In a spin chain where each spin has n possible states, the Pauli matrices become $n \times n$ matrices. In particular, the eigenvalues of σ_z become ω^i , where i is an integer, and ω is a complex number that satisfies $\omega^n \equiv 1$. The σ_x becomes the "shift" operator τ , which takes an eigenstate of $\sigma \equiv \sigma_z$ from ω^i to ω^{i+1} . These properties can be written mathematically as:

$$\sigma^{n} = \tau^{n} \qquad \omega \tau \sigma = \sigma \tau$$

$$\sigma^{\dagger} = \sigma^{n-1} \qquad \tau^{\dagger} = \tau^{n-1}$$

The first identity comes from the fact that $\omega^n = 1$. The second comes from the definition of the "shift" operator, and the last two come from unitarity. Now, the general spin chain Hamiltonian with nearest-neighbor interactions is given by:

$$H = \sum_{j=1}^{L} f_j \tau_j + \sum_{j=1}^{L-1} J_j \sigma_j^{\dagger} \sigma_{j+1}$$
(1)

where f_j and J_j are spatially anisotropic interaction strengths.

THE PARAFERMION FORMALISM

Analogous to the Majorana fermion operators of the Ising model, there are 2 parafermion modes per site:

$$\chi_j = \left(\prod_{k=1}^{j-1} \tau_k\right) \sigma_j \qquad \tilde{\chi}_j = \omega^{\frac{n-1}{2}} \chi_j \tau_j \qquad (2)$$

They look the same as the Ising fermions, but with σ and τ substituted for the respective Pauli matrices. In addition, sites are not filled or empty; there are *n* distinct fillings, as in figure 1. However, the second mode doesn't look quite like the second Majorana mode in the Ising model. This is due to the fact that $\omega \neq -1$ for the Z_n spin chain. From the properties of τ and σ , the parafermions

FIG. 1: Energy diagram for Z_3 parafermions. Each yellow dot represents the parafermion, and the filling is determined by which branch it is on.[1]

obey:

$$\chi_j^n = 1 \qquad \chi_j^{\dagger} = \chi_j^{n-1}$$
$$\chi_a \chi_b = \omega \chi_b \chi_a \text{ for } a < b$$

The constraint a < b is necessary because $\frac{1}{\omega} \neq \omega$; therefore switching a and b would cause issues without this constraint.

Rewriting the Hamiltonian in terms of these parafermion modes,

$$H = \omega^{\frac{n-1}{2}} \sum_{j=1}^{L} f_j \tilde{\chi}_j \chi_j^{\dagger} + \omega^{\frac{n-1}{2}} \sum_{j=1}^{L-1} J_j \chi_{j+1} \tilde{\chi}_j^{\dagger} \qquad (3)$$

To simplify the notation, define

$$h_j = \begin{cases} f_j \tilde{\chi}_j \chi_j^{\dagger}, & j \text{ odd} \\ J_j \chi_{j+1} \tilde{\chi}_j^{\dagger}, & j \text{ even} \end{cases}$$
(4)

From the parafermion operator relations, these operators obey relations:

$$h_j h_{j+1} = \omega h_{j+1} h_j \qquad h_j^n = \gamma_j$$

where $\gamma_j \equiv f_j^n$ for odd j and $\gamma_j \equiv J_j^n$ for even j. h_j s commute with each other if they are more than 1 site apart. Then, the Hamiltonian is just

$$H = \omega^{\frac{n-1}{2}} \sum_{j=1}^{2L-1} h_j$$

From the commutation relations for h_j , we can note that $h_{j-1}h_{j+1}$ commutes with h_j . This means that any operator of the form:

$$J^{(m)} = \sum_{b_m = b_{m-1}+2} 2L - 1 \dots \sum_{b_1=1} 2L - 2m + 1h_{b_m} \dots h_{b_1}$$

commutes with the Hamiltonian. For m = 1, this is just the Hamiltonian.

The higher Hamiltonians are operators corresponding to local conserved quantities; like the operators above, they commute with each other and the Hamiltonian. In a classical integrable model, the higher Hamiltonians are found by taking the logarithmic derivative of the transfer matrix and expanding it as a power series. Analogously, in the integrable quantum chain, the transfer matrix is replaced by a superposition of the non-local conserved quantities:

$$T(u) = 1 + \sum_{m=1}^{L} (-u)^m J^{(m)}$$

The relationship between the higher Hamiltonians and this "transfer matrix" is then:

$$-u\frac{d}{du}\ln T(u) = \sum_{m=1}^{\infty} H^{(m)}u^m$$

Matching powers of u^m in this expression, we can write down a recursion relation for generating the higher Hamiltonians in terms of the lower order Hamiltonians. Combined with the definition of $J^{(m)}$, this gives a closedform expression for the higher Hamiltonians (in a chain of length L):

$$H^{(m)} = \sum_{c=1}^{L-1} \sum_{c=1}^{(m)} \frac{1-\omega^m}{1-\omega^{r_1}} \prod_j^W A_{r_{j+1},r_j} h_{c+j-1}^{r_j}$$
(5)

where the sum over (m) is a sum over all r_j and W such that $\sum_{j=1}^{W} r_j = m$. The coefficients A are given by[1]:

$$A_{r,s} = \prod_{j=1}^{s-1} \frac{1 - \omega^{r+j}}{1 - \omega^j}$$

THE PARAFERMION SHIFT OPERATORS

The shift operators Ψ_j of the spin chain Hamiltonian transform energy eigenstates into different energy eigenstates. Thus, they must obey:

$$[H, \Psi_j] = \Delta_j \Psi_j$$

where Δ_j is the energy difference between the shifted and unshifted eigenstate for Ψ_j . This presents a problem, however, because commutators of parafermion operators with the Hamiltonian are not linear in the parafermion operators. If we define an operator that acts on operators \mathcal{H} such that

$$\mathcal{H}X = \frac{[H, X]}{1 - \omega}$$

, the "eigenoperators" of \mathcal{H} are the shift operators, with energy shifts corresponding to the eigenvalues of \mathcal{H} . It can be shown[1] that there are only nL shift operators, where L is the length of the system. This makes sense, as each spin only has n unique eigenvalues, and there are L sites. To find the eigenoperators, we first apply \mathcal{H} successively nL times to an arbitrary operator, and subtract out the bits that are proportional to the resultant lower order operators. This will create a basis of operators that can then be used to represent \mathcal{H} as a matrix. The eigenvectors of this matrix are then the desired eigenoperators. Using the simplest parafermion $\eta_0 \equiv \chi_1$ as the starting operator and the parafermion commutation rules, we can generate the sequence:

$$\eta_{1} = \mathcal{H}\eta_{0}$$

$$\vdots$$

$$\eta_{sn} = \mathcal{H}\eta_{sn-1} - \gamma_{2m-1}\eta_{(s-1)n}$$

$$\eta_{sn+1} = \mathcal{H}\eta_{sn} - \gamma_{2m}\eta_{(s-1)n+1}$$

$$\eta_{sn+l+1} = \mathcal{H}\eta_{sn+l} \text{ for } l < n$$

Note that, because of these relationships, the result of applying \mathcal{H}^n to some η_l will only contain η_r such that $r \mod n = l \mod n$. This means that, in the basis of η_l s, the matrix representation of \mathcal{H}^n breaks into several independent blocks; for every $0 \leq q < n$, there is a corresponding $L \times L$ matrix that mixes between all the different η_l with l = sn + q, $0 \leq s \geq L$. Computing the (normalized) eigenvector of \mathcal{H}^n with eigenvalue u_k , we obtain, for the *l*th block:

$$\phi_k^{(0)} = \frac{1}{N_k} \sum_{m=0}^{L-1} Q_{2m}(u_k) \eta_{sn} \qquad \phi_k^{(l)} = \frac{1}{N_k} \sum_{m=0}^{L-1} Q_{2m+1}(u_k) \eta_{sn+l}$$

where $Q_a(u)$ is the polynomial defined by

$$det\left(u^{\frac{1}{2}} - \mathcal{H}' \right) \prod_{b=a+1}^{2L-1} \gamma_b$$

 \mathcal{H}' is \mathcal{H} with the *a* bottom rows and *a* rightmost columns deleted. \mathcal{H} acts on these eigenvectors by $\mathcal{H}\phi_k^{(l)} = \phi_k^{(l+1)}$, except for l = n - 1, where the action is $\mathcal{H}\phi_k^{(l)} = u_k\phi_k^{(0)}$. Now, defining $\epsilon_k = u_k^{\frac{1}{n}}$, the shift operators are given by

$$\Psi_{p,k} = \sum_{q=0}^{n-1} \left(\omega^p \epsilon_k\right)^{-q} \phi_k^{(q)} \epsilon_k^n \tag{6}$$

FIG. 2: Various coupling phases in the Z_3 chiral clock model. The ground state switches from ferromagnetic to antiferromagnetic order as the phase is varied[2]

where p is an integer. The commutator of these eigenvectors and the Hamiltonian is, from the definition of \mathcal{H} , $(1-\omega)\omega^{p}\epsilon_{k}$. Thus, relative to the ground state, the spectrum is given by the sum over all possible shifts:

$$E = \sum k = 1^L \omega^{p_k} \epsilon_k \tag{7}$$

PARAFERMION ZERO MODES

The creation operator for a zero mode of a system must satisfy 2 criteria. First, it must commute with the Hamiltonian (the energy is conserved so zero energy is added). It must also shift the particle number by 1; for fermions, this would correspond to the operator anticommuting with $(-1)^F$, where F is the fermion number. For parafermions, this becomes:

$$\omega^P \Psi = \omega \Psi \omega^P$$

where Ψ is the zero mode operator and ω^P is the Z_n charge. An edge zero mode must also be localized near an edge; the zero-mode operator's dependence on the state of parafermions at some site l away from the edge should be exponentially small.

The most general nearest-neighbour Hamiltonian for the Z_n spin chain in terms of parafermions is[2]:

$$H_{n} = -\sum_{j=1}^{L} \sum_{m=1}^{n-1} \alpha_{m} f_{j} \omega^{m(m-n)/2} \chi_{j}^{n-m} \psi_{j}^{m}$$
$$-\sum_{j=1}^{L-1} \sum_{m=1}^{n-1} \hat{\alpha}_{m} J_{j} \omega^{m(m-n)/2} \psi_{j}^{n-m} \chi_{j+1}^{m}$$
$$= \mathcal{F} + \mathcal{V}$$

where \mathcal{F} contains all shift terms, and \mathcal{V} contains all interaction terms. Note that the couplings α are not necessarily real.

We can generate the zero-mode iteratively by noting that the parafermion at the edge, χ_1 , commutes with \mathcal{V} ,

$$\mathcal{F}X_n = \mathcal{V}X_{n+1}$$

Continuing this to infinity generates the iterative zero mode solution. It should be noted that the iterative method fails for α_m real[2].

For complex α_m , the iterative solution exists. Consider the operator \mathcal{H} defined by $\mathcal{H}\nu \equiv [H, |\nu\rangle]$, where $|\nu\rangle$ is an ordered product of parafermion operators acting on the vacuum REFERENCE. A zero mode corresponds to an eigenvector of \mathcal{H} with eigenvalue zero. This matrix can be written as

$$\mathcal{H} = -\sum_{j=1}^{L} f_j \mathcal{H}_{2j-1} - \sum_{j=1}^{L-1} J_j \mathcal{H}_{2j}$$
$$\equiv \mathcal{F}' + \mathcal{V}'$$

where \mathcal{H}_k acts on $|\nu\rangle$ by shifting the parafermion at site k down m, and shifting the parafermion at site k+1 up m. If site k is unoccupied, then \mathcal{H}_k annihilates that state. Now we can apply the iterative method to find a state of \mathcal{H} with zero eigenvalue, starting from $|\nu_0\rangle = \chi_1|0\rangle$ which commutes with \mathcal{V}' . However, \mathcal{V}' has several zero eigenvalue eigenvectors. If $\mathcal{F}'|\nu_n\rangle$ overlaps with any of these eigenvectors, then $|\nu_{n+1}\rangle$ cannot be found from inverting \mathcal{V}' and multiplying by $\mathcal{F}'|\nu_n\rangle$. Thus, the contribution of these zero eigenvalue eigenvectors to $|\nu_n\rangle$ must be subtracted out to get the exact zero mode. This zero mode, however, is not necessarily an edge mode. The χ_l parafermion is of order $\frac{f}{J}^{l-1}$ or greater in the expansion of an edge zero mode operator. Thus, only the parafermion operator furthest from the edge for each power of $\frac{J}{J}$ determines whether or not the solution is an edge mode. The furthest parafermion operator in $\mathcal{F}'|\nu_n\rangle$ is χ_{2n+2} , from the action of \mathcal{H}_{2n+1} . All terms acted on by \mathcal{H}_{2n+1} contain χ_{2n+2} and thus \mathcal{V}' is invertible for the leading term without corrections. Iterating just the leading term, the parafermion χ_{2n+2} is proportional to $\frac{f}{I}^{n-1}|\nu_0\rangle$, which satisfies the criteria for an edge mode.

- P. Fendley, J. Phys. A 47, 075001 (2014) [arXiv:1310.6049 [cond-mat.stat-mech]].
- [2] P. Fendley, J. Stat. Mech. **1211**, P11020 (2012)
 [arXiv:1209.0472 [cond-mat.str-el]].