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The parafermion operators are a generalization of the free fermion operators used to solve the
transverse field Ising spin chain. We will use the parafermion formalism to show that the Zn spin
chain Hamiltonian can be written in terms of free parafermion modes. Furthermore, we will show
that parafermion edge zero modes exist when nearest-neighbour interactions are chiral.

INTRODUCTION

In the Ising model, each site on the lattice has only 2
possible states, and the Hamiltonian is constructed from
Pauli matrices. In a spin chain where each spin has n
possible states, the Paui matrices become n×n matrices.
In particular, the eigenvalues of σz become ωi, where i
is an integer, and ω is a complex number that satisfies
ωn ≡ 1. The σx becomes the ”shift” operator τ , which
takes an eigenstate of σ ≡ σz from ωi to ωi+1. These
properties can be written mathematically as:

σn = τn ωτσ = στ

σ† = σn−1 τ † = τn−1

The first identity comes from the fact that ωn = 1. The
second comes from the definition of the ”shift” operator,
and the last two come from unitarity. Now, the gen-
eral spin chain Hamiltonian with nearest-neighbor inter-
actions is given by:

H =

L∑
j=1

fjτj +

L−1∑
j=1

Jjσ
†
jσj+1 (1)

where fj and Jj are spatially anisotropic interaction
strengths.

THE PARAFERMION FORMALISM

Analogous to the Majorana fermion operators of the
Ising model, there are 2 parafermion modes per site:

χj =

(
j−1∏
k=1

τk

)
σj χ̃j = ω

n−1
2 χjτj (2)

They look the same as the Ising fermions, but with σ
and τ substituted for the respective Pauli matrices. In
addition, sites are not filled or empty; there are n distinct
fillings, as in figure 1. However, the second mode doesn’t
look quite like the second Majorana mode in the Ising
model. This is due to the fact that ω 6= −1 for the Zn spin
chain. From the properties of τ and σ, the parafermions

FIG. 1: Energy diagram for Z3 parafermions. Each yellow
dot represents the parafermion, and the filling is determined
by which branch it is on.[1]

obey:

χn
j = 1 χ†j = χn−1

j

χaχb = ωχbχa for a < b

The constraint a < b is necessary because 1
ω 6= ω; there-

fore switching a and b would cause issues without this
constraint.

Rewriting the Hamiltonian in terms of these
parafermion modes,

H = ω
n−1
2

L∑
j=1

fjχ̃jχ
†
j + ω

n−1
2

L−1∑
j=1

Jjχj+1χ̃
†
j (3)

To simplify the notation, define

hj =

{
fjχ̃jχ

†
j , j odd

Jjχj+1χ̃
†
j , j even

(4)

From the parafermion operator relations, these operators
obey relations:

hjhj+1 = ωhj+1hj hnj = γj

where γj ≡ fnj for odd j and γj ≡ Jn
j for even j. hjs

commute with each other if they are more than 1 site
apart. Then, the Hamiltonian is just

H = ω
n−1
2

2L−1∑
j=1

hj
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HIGHER HAMILTONIANS

From the commutation relations for hj , we can note
that hj−1hj+1 commutes with hj . This means that any
operator of the form:

J (m) =
∑

bm=bm−1+2

2L− 1 . . .
∑
b1=1

2L− 2m+ 1hbm . . . hb1

commutes with the Hamiltonian. For m = 1, this is just
the Hamiltonian.

The higher Hamiltonians are operators corresponding
to local conserved quantities; like the operators above,
they commute with each other and the Hamiltonian. In
a classical integrable model, the higher Hamiltonians are
found by taking the logarithmic derivative of the transfer
matrix and expanding it as a power series. Analogously,
in the integrable quantum chain, the transfer matrix is
replaced by a superposition of the non-local conserved
quantities:

T (u) = 1 +

L∑
m=1

(−u)mJ (m)

The relationship between the higher Hamiltonians and
this ”transfer matrix” is then:

−u d

du
lnT (u) =

∞∑
m=1

H(m)um

Matching powers of um in this expression, we can write
down a recursion relation for generating the higher
Hamiltonians in terms of the lower order Hamiltonians.
Combined with the definition of J (m), this gives a closed-
form expression for the higher Hamiltonians (in a chain
of length L):

H(m) =

L−1∑
c=1

(m)∑ 1− ωm

1− ωr1

W∏
j

Arj+1,rjh
rj
c+j−1 (5)

where the sum over (m) is a sum over all rj and W such

that
W∑
j=1

rj = m. The coefficients A are given by[1]:

Ar,s =

s−1∏
j=1

1− ωr+j

1− ωj

THE PARAFERMION SHIFT OPERATORS

The shift operators Ψj of the spin chain Hamiltonian
transform energy eigenstates into different energy eigen-
states. Thus, they must obey:

[H,Ψj ] = ∆jΨj

where ∆j is the energy difference between the shifted and
unshifted eigenstate for Ψj . This presents a problem,
however, because commutators of parafermion operators
with the Hamiltonian are not linear in the parafermion
operators. If we define an operator that acts on operators
H such that

HX =
[H,X]

1− ω
, the ”eigenoperators” of H are the shift operators, with
energy shifts corresponding to the eigenvalues of H. It
can be shown[1] that there are only nL shift operators,
where L is the length of the system. This makes sense,
as each spin only has n unique eigenvalues, and there are
L sites. To find the eigenoperators, we first apply H suc-
cessively nL times to an arbitrary operator, and subtract
out the bits that are proportional to the resultant lower
order operators. This will create a basis of operators that
can then be used to represent H as a matrix. The eigen-
vectors of this matrix are then the desired eigenoperators.
Using the simplest parafermion η0 ≡ χ1 as the starting
operator and the parafermion commutation rules, we can
generate the sequence:

η1 = Hη0
...

ηsn = Hηsn−1 − γ2m−1η(s−1)n
ηsn+1 = Hηsn − γ2mη(s−1)n+1

ηsn+l+1 = Hηsn+l for l < n

Note that, because of these relationships, the result of
applying Hn to some ηl will only contain ηr such that
r mod n = l mod n. This means that, in the basis of
ηls, the matrix representation of Hn breaks into several
independent blocks; for every 0 ≤ q < n, there is a cor-
responding L× L matrix that mixes between all the dif-
ferent ηl with l = sn + q, 0 ≤ s ≥ L. Computing the
(normalized) eigenvector of Hn with eigenvalue uk, we
obtain, for the lth block:

φ
(0)
k =

1

Nk

L−1∑
m=0

Q2m(uk)ηsn φ
(l)
k =

1

Nk

L−1∑
m=0

Q2m+1(uk)ηsn+l

where Qa(u) is the polynomial defined by

det
(
u

1
2 −H′

) 2L−1∏
b=a+1

γb

H′ is H with the a bottom rows and a rightmost columns

deleted. H acts on these eigenvectors by Hφ(l)k = φ
(l+1)
k ,

except for l = n− 1, where the action is Hφ(l)k = ukφ
(0)
k .

Now, defining εk = u
1
n

k , the shift operators are given by

Ψp,k =

n−1∑
q=0

(ωpεk)
−q
φ
(q)
k εnk (6)



3

FIG. 2: Various coupling phases in the Z3 chiral clock model.
The ground state switches from ferromagnetic to antiferro-
magnetic order as the phase is varied[2]

where p is an integer. The commutator of these eigen-
vectors and the Hamiltonian is, from the definition of
H, (1 − ω)ωpεk. Thus, relative to the ground state, the
spectrum is given by the sum over all possible shifts:

E =
∑

k = 1Lωpkεk (7)

PARAFERMION ZERO MODES

The creation operator for a zero mode of a system must
satisfy 2 criteria. First, it must commute with the
Hamiltonian (the energy is conserved so zero energy is
added). It must also shift the particle number by 1;
for fermions, this would correspond to the operator anti-
commuting with (−1)F , where F is the fermion number.
For parafermions, this becomes:

ωP Ψ = ωΨωP

where Ψ is the zero mode operator and ωP is the Zn

charge. An edge zero mode must also be localized near an
edge; the zero-mode operator’s dependence on the state
of parafermions at some site l away from the edge should
be exponentially small.

The most general nearest-neighbour Hamiltonian for
the Zn spin chain in terms of parafermions is[2]:

Hn = −
L∑

j=1

n−1∑
m=1

αmfjω
m(m−n)/2χn−m

j ψm
j

−
L−1∑
j=1

n−1∑
m=1

α̂mJjω
m(m−n)/2ψn−m

j χm
j+1

= F + V

where F contains all shift terms, and V contains all in-
teraction terms. Note that the couplings α are not nec-
essarily real.

We can generate the zero-mode iteratively by noting
that the parafermion at the edge, χ1, commutes with V,

but not F (it is a zero mode if there are no shift terms).
If we can write the commutator [F , χ1] as a commutator
[V, X] for some operator X, then subtracting X from
χ1 will cancel out the remainder from F and add a new
remainder. Iterating this:

FXn = VXn+1

Continuing this to infinity generates the iterative zero
mode solution. It should be noted that the iterative
method fails for αm real[2].

For complex αm, the iterative solution exists. Consider
the operator H defined by Hν ≡ [H, |ν〉], where |ν〉 is an
ordered product of parafermion operators acting on the
vacuum REFERENCE. A zero mode corresponds to an
eigenvector of H with eigenvalue zero. This matrix can
be written as

H = −
L∑

j=1

fjH2j−1 −
L−1∑
j=1

JjH2j

≡ F ′ + V ′

where Hk acts on |ν〉 by shifting the parafermion at site k
down m, and shifting the parafermion at site k+1 up m.
If site k is unoccupied, then Hk annihilates that state.
Now we can apply the iterative method to find a state of
H with zero eigenvalue, starting from |ν0〉 = χ1|0〉 which
commutes with V ′. However, V ′ has several zero eigen-
value eigenvectors. If F ′|νn〉 overlaps with any of these
eigenvectors, then |νn+1〉 cannot be found from invert-
ing V ′ and multiplying by F ′|νn〉. Thus, the contribu-
tion of these zero eigenvalue eigenvectors to |νn〉 must
be subtracted out to get the exact zero mode. This
zero mode, however, is not necessarily an edge mode.

The χl parafermion is of order f
J

l−1
or greater in the

expansion of an edge zero mode operator. Thus, only
the parafermion operator furthest from the edge for each
power of f

J determines whether or not the solution is
an edge mode. The furthest parafermion operator in
F ′|νn〉 is χ2n+2, from the action of H2n+1. All terms
acted on by H2n+1 contain χ2n+2 and thus V ′ is invert-
ible for the leading term without corrections. Iterating
just the leading term, the parafermion χ2n+2 is propor-

tional to f
J

n−1
|ν0〉, which satisfies the criteria for an edge

mode.
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