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In this paper, I summarize the results obtained by a recent study of the braiding statistics of loop
excitations in three dimensions. This is seen to be an extension of the anyonic braiding statistics
in two dimensions. Thus, fermionic and bosonic excitations are just a specific case of this new
statistics.

INTRODUCTION

In R3, the spin-statistics theorem classifies particles
as either fermions or bosons, depending on whether the
wavefunction under the exchange of two such particles is
anti-symmetric or symmetric, respectively. In R2, parti-
cle exchange picks up a continuum of values, rather than
the discrete ±1 that we see in R3. These particles are
called anyons, so called because they can take on any
phase under particle exchange, i.e.:

|ψ1ψ2〉 = eiθ|ψ2ψ1〉, for particles in R2 (1)

For particles in R3, θ ∈ {0, π}. It is then natural to
ask if we can generalize the braiding statistics in R3 so
that objects picks up a general phase when interchanged
(i.e. θ ∈ [0, 2π)).

The authors of [1] consider the braiding statistics be-
tween particle-like excitations and loop-like excitations
which live on a 3D lattice. At first thought, particle-loop
and two-loop braids may appear to be sufficient to en-
capsulate the braiding statistics. The authors of [1] show
that this is not true: that in loop-loop braids, a third
loop is necessary in order to obtain physically relevant,
non-trivial statistical phases. See Figure 1.

FIG. 1: Loop α is braided around loop β, both of which have
loop γ going through them. Image from [1].

The authors of [1] consider a 3D lattice built out of
K different species of bosons whose particle numbers are
conserved (mod N). In other words, there are K indepen-
dent local operators which, when acting on states, return
values that are modular. As such, this is a (ZN )K gauge
theory.

Each edge on the lattice corresponds to particle spin,
so there are various unitary operators for this system:

FIG. 2: Electric excitations terminate on vertices; magnetic
excitations terminate in plaquettes. Image from [2].

Ŝ±|n〉 = e±2πin/N |n〉
Ŵ±|n〉 = |n± 1 (modN)〉

(2)

where n = 0, 1, . . . , N − 1, and where Ŝ measures spin
and Ŵ raises or lowers spin (see [3] for additional infor-
mation on the algebra of these operators).

States in the Hilbert space can be thought of as strings
on the lattice. Point-like excitations carry gauge charge
and occur for strings which do not close. “Electric” ex-
citations occur at the ends of strings which terminate on
nodes of the lattice; “magnetic” excitations occur at the
ends of strings which terminate in the plaquettes of the
lattice (see Figure 2). The most general point-like exci-
tation in this theory is then q = (q1, . . . , qK), where each
qi is conserved (mod N). There can also be loop-like ex-
citations which carry gauge flux φ = (φ1, . . . , φK), where
each φi is some multiple of 2π

N [5].

BRAIDING STATISTICS

We can now proceed to answer the question of what
the resulting statistical phase is when we use charges and
loops in this theory for the braiding process. There are
three braiding processes we can consider: charge-charge,
charge-loop, or loop-loop. Since the particle excitations
are bosons, the charge-charge process gives no statistical
phase.
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Charge-loop braiding Statistics

If a charge q is braided around a loop with flux φ, the
resulting statistical phase (θ) is given by the Aharanov-
Bohm equation:

θ = q · φ (3)

Two-loop braiding statistics

See Figure 3. There are two interesting cases here that
will give different statistical phases: (1) loops α and β
are neutral or (2) α and β are charged. For case (1),
either loop can be shrunk to a point and annihilated, so
that the other loop would simply braid around vacuum.
This gives θ = 0. For case (2), using equation (3) we get
θαβ = qα · φβ + qβ · φα, because loop β “sees” charge qα
braid around it and vice versa for loop α.

Although this phase is non-trivial, it is independent
of the actual bosons we choose to populate the lattice.
Thus, we should move on to examine if we can con-
struct statistical phases which differ depending on the
SPT model from the three-loop braiding process.

FIG. 3: Loop α is braided around loop β. Image from [1].

Three-loop braiding statistics

Adding a third loop that passes through α and β alters
the topology of the braiding process, so we may expect to
see a different statistical phase arise (see Figure 1). There
are two statistical phases to consider here: θαβ,γ and θα,γ .
The first corresponds to “full-braiding” two distinct loops
(i.e. α 6= β), the second corresponds to “half-braiding”
two identical loops. The braid operation is taken to be
commutative so that θαβ,γ = θβα,γ . Another constraint
is that θαα,γ = θα,γ + θα,γ = 2θα,γ (i.e. two half-braids
= one full-braid).

Further constraints on θ can be imposed if additional
algebraic operators are defined on loops: β1 + β2 and
β1 ⊕ β2 (Figure 4). The first operation fuses two loops
together that initially share the same γ-loop, and results
in a final loop with the same γ-loop going through it. The
second operation fuses two loops together that initially
have different γ-loops, and results in a final loop with

both initial γ-loops going through it. These lead to the
further constraints (proved in [1]):

θα(β1+β2),γ = θαβ1,γ + θαβ2,γ

θ(α1
L
α2)(β1

L
β2),(γ1+γ2) = θα1β1,γ1 + θα2β2,γ2

(4)

FIG. 4: Two ways to add loops. Image from [1].

For loops α and β with unit flux, we can define:
Θij,k ≡ Nθαβ,ek

and Θi,k ≡ Nθα,ek
, where φα = 2π

N ei,
φβ = 2π

N ek, el ≡ (0, . . . , 1, . . . , 0)=vector with a “1” in
the lth coordinate, and zeroes everywhere else. Using
these new objects and the constraints in (4), we should be
able to distinguish between different symmetry-protected
topological models. The authors of [1] derive the follow-
ing:

Θij,k =
2π
N

(Mikj −Mkij +Mjki −Mkji)

Θi,j =
2π
N

(Miji −Mjii)
(5)

Different 3D gauged SPT models can be constructed
by elements of the cohomology group H4((ZN )K , U(1))
(see [4]). The Mijk are used to construct an Abelian
subgroup of H4, so they contain information about the
specific gauged SPT model. For instance, (ZN )2 gives
N2 distinct phases. For a more complete description of
these braiding statistics, it may be necessary to look at
the non-Abelian elements of H4.
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