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The theoretical origin of the magneto-roton is discused. Connections are made to a geometric
theory of the Fractional Quantum Hall effect and gravity. Universal features of the system are
discussed in terms of effective field theories derived from the action.

INTRODUCTION

Concerning the Fractional Quantum Hall Effect
(FQHE), it was experimentally determined that the con-
ductivity in a two dimensional electron gas (2DEG) with
transverse magnetic field is quantized proportional to cer-
tain rational values of a filling fraction, ν.[1] The filling
factor, ν, represents the amount of electrons in the Lan-
dau levels of the single particle, quantum Hamiltonian.
With fractional filling, at low enough temperatures, a
collective ground state of electrons forms that has inter-
esting low energy excitations. Low enough means tem-
peratures much less than the cyclotron frequency, which
would mean most of the electrons spend most of the time
in the lowest Landau level, which correspond to the single
particle groundstates. A variational wave function with
excellent overlap with the ground state at ν=1/3 was
given by Laughlin.[2] However in this paper, we discuss
the magneto-rotons excitations, a.k.a magneto-phonons,
of Girven et al. These excitations are charge neutral,
as opposed to the so-called quasi-particles/holes, which
are fractionally charged. The FQHE spectrum is gapped
and has the roton minimum at a small finite momentum
vector k; analogous to the roton minimum in superfluid
helium but now we have particles a magnetic field, hence
the name magneto-roton. Features of the original analy-
sis by Girven et al. for the magneto-roton in the FQHE
follow Feynmans closely derivation of the roton in helium.
This procedure will be briefly discussed. [3]

Another topic of interest, especially for this topics
course, is concerning universality in low energy effective
field theories theories of the FQHE. When examining the
action of the FQHE one can separate it into universal
and non-universal terms. Generally, non-universal terms
would depend on the specifics of the inter-particle inter-
action potential, such as the Coulomb repulsion. Assum-
ing there we are at a gap between Landau levels with
Fermi surface closer to the ground state energy, that is,
at low to zero temperature, one might expect the 2DEG
with different interactions to have the same qualitative
behavior, namely the quantized conductivity plateaus of
the Quantum Hall effect. One low energy theory of moti-
vated by Girvin and Mcdonald and followed up by Zhang
et al comes about when examining the Chern-Simons
term that results from a boson mapping.[4, 5] The result-
ing topological field theory does a very good job of grasp-
ing the universal physics with such features as quantized

Hall conductance, quasiparticles with fractional charge
and exchange statistics, and the magnetoroton minimum.
Also, it known that for the FQHE the topological Chern-
Simons field theory in the bulk corresponds to a confor-
mal field theory for the edge states(a chiral Luttinger
liquid in Laughlin states).[6]

However, beyond that another universal but less no-
torious feature of the FQHE is the Hall viscosity or
”Lorentz Shear Modulus” odd viscosity,[7] oddly enough
not dissipative, that is related to the static structure fac-
tor. An associated values is the shift S, which codifies
the change in the flux quanta with respect the topol-
ogy of the surface. These show up in q2 corrections to
the conductivity and q4 corrections to the static struc-
ture factor.[8] Furthermore, it has been argued that the
behavior of the magneto-roton spectrum at low energies
is similar to that of a graviton, which can be described
by fluctuations of an internal metric relating the sys-
tem to gravity.[8–10] Many of these quantities are de-
pendent upon the topology and geometry of the system,
which lead to phenomena such as topological degeneracy
of ground states. Thus, experiments would be able to dif-
ferentiate between ground states, excited states, and dif-
ferent quantum phases of the 2DEG in a magnetic field.
These extra universal features can be derived from the
Wen-Zee action, a term not included in the Standard
Chern-Simons bosonic theory.citewenzee

MAGNETOROTON

First some comments on the motivation of the ap-
proach called the Single Mode Approximation (SMA).
In superfluid Helium, which is made H4 bosons, Feyn-
man argued that he could use a single wave-vector mode
to describe the behavior of the first excited state of the
bosons at low k up to the roton minimum in the spec-
trum (Figure 1).[11] The reasoning is that the boson fluid
is claimed to have a scarcity of low lying available states
only due to phonon excitations, which are collective in
nature. Since a single particle excitation at wave-vector
K would imply translation from one point to another,
then if the fluid is adjusted to remain close to an equilib-
rium spacing is indistinguishable from exchanging parti-
cles. For bosons, the wave function is the same under
particle exchange. Other reorganizations are just combi-
nations of the phonons. In the FQHE, we have fermions
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with a Fermi surface that allows a continuum of many
single particle states in its vicinity. However, the mag-
netic field forces the kinetic energies to be quantized as
the Landau levels. In limits of zero temperature and
large magnetic field, corresponding to energies much less
than the 2nd Landau Level of hwc, we expect the elec-
trons to be confined in the Lowest Landau level, also
known as quenching. This is the argument of Girvin,
Macdonal and Platzman. Furthermore, for the low lying
theory we are not concerned with collective excitations
above the Lowest Landau level, so Girvin et al. projected
their operators down to the Lowest Landau level. This
is the assumption of no Landau Level mixing. It leads to
the following analysis, where the functions and operators
will depend on a single mode k. I present part of the
derivation of Girven et. al with only minor adjustments
for clarity.[3] First in anology to Feynman for superfluid
helium, an excited state will be of the form:

φk(~ri) = N−1/2ρkψ(~ri)

where N is the number of particles, ψ(~ri) is the ground
state, ρk is fourier transform of the following density op-
erator:

ρ(~R) =

N∑
i=1

δ2(~R− ~ri)

and

ρk =

∫
e−i

~k·~Rρ(~R)d2R =

N∑
i=1

e−i
~k·~ri

As a check, this state is orthogonal to the ground state:

〈φk|ψ〉 = N−1/2
∫

e−i
~k·~R〈ψ|ρ(~R)|ψ〉d2 ~R

= N−1/2〈ψ|
N∑
i=1

e−i
~k·~ri |ψ〉 = 0

Since we expect the ~ri to be spread out uniformly about

the origin for a homogeneous fluid, the sum
∑N
i=1 e−i

~k·~ri

vanishes, as it is periodic in sine and cosine. Note: Op-
erator ~ri becomes a number when it acts on |Ψ〉 in the
position basis. The energy spectrum ∆(k) is given by

the following forumula. s(~k) is the static structure fac-
tor, which in this case also equals the norm of the so far
un-normalized wave function, so:

s(~k) = 〈φk|φk〉 = N−1〈ψ|φ†kφk|ψ〉

∆(k) =
〈φk|H − E0|φk〉
〈φk|φk〉

=
f(k)

s(k)

where f(k) = 〈ψ|H − E0|ψ〉 is called the oscillator
strength, as in ~ω, and E0 is the ground state energy.

Thus, ∆(k) is the expectation value of energy offset from
the ground state, so it represents a gap.

To project to the lowest landau level recall that the
charged particle in a magnetic field maps to a 2D har-
monic oscillator. In the symmetric gauge, ~B = −Bẑ,the
functions for the degenerate ground states within the low-
est Landau level are analytic functions f(z = x+iy) times
a common Gaussian factor in |z|2 = zz∗:

Φm(z) =
1

2π2mm!
zme−|z|

2/4

The general prescription of the projection is to replace
z* which is not analytic:

z∗ −→ z̄∗ = z† = 2
d

dz

Generally this makes the operators messier by adding
extra derivative terms. For example, for the density pro-
jection, first write it in terms of z and z∗, that is use z =
x+iy and k = kx + iky, so:

ρ =

N∑
i=1

e−i
(kz∗j +k∗zj)

2

Then the projected density is then:

ρ̄ =

N∑
i=1

e
−ik ∂

∂zj e
−ik∗zj

2

where the derivative is said to be normal ordered by going
first. For more details I refer to the original analysis in
Girvin et al.[3] After also projecting the Hamiltonian and
the structure factor one gets the spectrum:

¯∆(k) = ~ωc
k2l2/2

2m(1− e−
k2l2

2 )

where the we have the magnetic length scale l2 = ~
mωc

.
Graphing this gives the desired spectrum with the ro-
ton minimum; a numerical study by Haldane and Rezayi
is shown in Figure 1.The exact ground state for the
Coulomb potential has not been found but the fea-
ture has been verified numcerically for small number of
particles.[12] Since the roton minimum is universal, it
should appear for the different quantum phases corre-
sponding to different filling, as well as systems with dif-
ferent hamiltonians, which it does in numerical studies.[3]

CHERN-SIMONS AND BEYOND

The previous analysis has generally used canonical
Quantum Mechanics techniques, also called first quan-
tization, as opposed to field theory or ”second quantiza-
tion”. In the following analysis I discuss a mapping to
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FIG. 1: Figure 1. Numerical results of Haldane and Rezayi
for ν = 1/3 spectrum with roton minimum at kl=1.4

quantum field theory using a bosonic field theory ap-
proach applied by Wen and Zee.[13] These composite
bosons attach to magnetic flux tubes. At the special
fillings they condense to a superfluid. The quasiparti-
cle excitations are vortices, where as the magnetoroton
is a vortex-antivortex pair. Given the Quantum Hall
Hamiltoninan (electrons interacting pairwise in a mag-
netic field), we can Legendre transform to a Lagrangian,
hence getting an action. Transforming the action to
bosons we get certain terms that have interesting sym-
metries. Hoyos and Son using scaling arguments of the
derivatives in a parameter expansion and find that the
leading order term is the Chern-Simons term[14]:

SCS =
ν

4π

∫
dtd2xεµνλAµ∂νAλ

Here Aµ is an electromagnetic vector potetnial. It de-
scribes composite bosons, that is bosons attached to mag-
netic flux tubes. Further, it does not depend on a metric
so describes a topological field theory. From this one can
derive Hall conductivity and the properties low lying par-
ticle excitations. There is another term, SWZ of second
order in the action that contains universal information,
Hoyos and Son in their analysis of Hall viscosity call it
the Wen-Zee term, since they analyzed it originally. De-
fine eai , a=1,2 are veilbeins (local normal vectors) and
εij = εabeai e

b
j . It is in terms of the spin connection:

ω0 =
1

2
(εabeaj∂0e

b
j)

ωi =
1

2
(εabeaj∂ie

b
j − εjk∂jgik)

where gij = eai e
a
j is the metric and:

SWZ =
κ

4π

∫
dtd2xεµνλωµ∂νAλ

From this term, we can derive another universal
quanity, that is, the Hall viscosity, usually η. Also, note
that ν is again the filling fraction and κ = 1

2νS, where
S is stll the shift.The shift and Hall viscosity are pro-
portional, although according to Son not necessarily dy-
namically (at nonzero frequency). This Wen-Zee term in
some sense goes beyond topology into geometry, since it
is dependent on the metric. In this same vein, Son and
Haldane have separately claimed that the magneto-roton
corresponds to a graviton since in their geometric theo-
ries it is coupled to a rank 2 tensor (the internal metric),
which corresponds to a spin 2 particle.[9, 10] According
to Son, these two terms described are art of the universal
part of the action, whose properties will not depend on
the specifics of the original interparticle interaction.

Another field theory approach by Fradkin et al. uses
a Chern-Simons action with composite fermions, first in-
troduced by Jain, which instead of composite boson su-
perfluidity describes the quantum hall phases as Inte-
ger Quantum Hall effects of quasi-particles in a new ef-
fective (screened) magnetic field, which corresponds to
the observed fractional quantum hall states for the reg-
ular electrons.[15, 16] The effective magnetic field comes
about because the fermions or bosons get magnetic fluxes
attached to them eating up part of the field, which is
described by the Chern-Simons term. For explicit de-
tails of how these derivaitons occur, I found that Frad-
kin’s book has a good treatment of bosonic and fermionic
Chern-Simons theory in the FQHE.[17] The extra Wen-
Zee term is treated along with the other term originally
by Wen and Zee, who derived from it the shift. It is
also discussed in papers by Hoyos and Son or Haldane,
as mentioned above, or by Read for a slgihtly different
interpretation.[18] Theoretically, many of these quanties
are terms in the momentum series expansion of the static
structure factor. In a related paper by Weigmann et al.,
they relates the shift and filling fraction to something
called the gravitational anomaly, which is proportional
to the curvature.[19] Using conformal field theory, they
study how the correlations of the density of the quantum
hall fluid relate to curvature getting the structure factor
to q6 for different FQHE states.

CONCLUSIONS

The neutral excitations in the Fractional Quantum
Hall effect were discussed. These along with the fraction-
ally charged ones are part of a set of universal features
of these systems, such as quantized non-dissipative con-
ductivity, conductivity plateaus at rational filling frac-
tion and constant non-dissipative Hall viscosity, which
can be experimentally measured. We briefly mentioned
the relation of the magneto-roton to the graviton. In
some sense it seems that Fractional Quantum Hall sys-
tems, besides being concrete experimentally, also provide
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a simpler model for how the rest of the universe might
work. At different energy scales we see the physics of the
system dominated by different effective theories that is
the neutral magnetorotons, the quasi particles, and the
electrons themselves with increasing energy respectively.
The mentioned field theory methods were historically de-
rived with hindsight and furthermore are effective theo-
ries, so approximate in some sense. Nevertheless looking
deeper, corrections to the Chern-Simons theory give fur-
ther universal properties along with non-universal ones.
The approach is quite elegant in the search for interest-
ing, universal properties of the underlying theory.
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